The outbreak of COVID-19 posed a significant challenge to the emergency management system for public health emergencies, especially in China, where the epidemic began. As intelligent technology has injected new vitality into emergency management, applying intelligent technology to optimize emergency resource allocation (ERA) has become a focus of research in the post-epidemic era. Based on China’s experience in preventing and controlling COVID-19, this paper first analyzes the characteristics and process of ERA in public health emergencies, and then synthesizes the relevant Chinese studies in recent years to identify the intelligent technologies affecting ERA in China using word frequency analysis technology. We also construct an intelligent emergency resource allocation mechanism in four areas: medical intelligence, management intelligence, decision-making intelligence, and supervision intelligence. Finally, we use the entropy-TOPSIS method to evaluate the impact of intelligent technologies on ERA, and we rank the criticality of intelligent technologies. The experimental results show that (i.) medical intelligence and management intelligence are the keys to developing intelligent ERA, and (ii.) among the identified essential intelligent technologies, artificial intelligence (AI), and big data technology have a more significant and critical role in emergency resource intelligence allocation.
Blockchain technology ensures the security of cross-organizational data sharing in the process of collaborative innovation. It drives the development of collaborative innovation in discrete manufacturing to intelligent innovation. However, collaborative innovation is a multi-role, networked, and open resource-sharing process. Therefore, it is easy to form information barriers and increase the risk of cooperation between organizations. In this paper, we firstly analyze the blockchain-based information management models in the traditional discrete manufacturing collaborative innovation process. Then, we found that in the process of industry-university-research (IUR) collaborative innovation, consensus servers maintain too many connections due to the high latency between them, which leads to lower consensus performance and efficiency. To solve this problem, we proposed the dependency analysis (DA) model, which separates and assembles transactional data and non-transactional data into different blocks by analyzing read_set and write_set of transactions. Besides, we propose the out-of-order Raft (OORaft) model to allow non-transactional blocks to be copied in parallel, which can also prioritize transactional blocks. Finally, we implement the blockchain model in the discrete manufacturing scenario based on Hyperledger Fabric. The experimental results show that our model improves the transactions per second (TPS) performance of 1.9X-3.7X and reduces transactional data committing latency by more than 40% in the target scenario.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.