BackgroundAssessing the correlation between gut microbiota (GM) and bone homeostasis has increasingly attracted research interest. Meanwhile, GM dysbiosis has been found to be associated with abnormal bone metabolism. However, the function of GM in disuse-induced osteoporosis (DIO) remains poorly understood. In our research, we evaluated the characteristics of GM and fecal metabolomics to explore their potential correlations with DIO pathogenesis.MethodsDIO rat models and controls (CON) underwent micro-CT, histological analyses, and three-point bending tests; subsequently, bone microstructures and strength were observed. ELISAs were applied for the measurement of the biochemical markers of bone turnover while GM abundance was observed using 16S rDNA sequencing. Metabolomic analyses were used to analyze alterations fecal metabolites. The potential correlations between GM, metabolites, and bone loss were then assessed.ResultsIn the DIO group, the abundance of GM was significantly altered compared to that in the CON group. Moreover, DIO significantly altered fecal metabolites. More specifically, an abnormally active pathway associated with bile acid metabolism, as well as differential bacterial genera related to bone/tissue volume (BV/TV), were identified. Lithocholic acid, which is the main secondary bile acid produced by intestinal bacteria, was then found to have a relationship with multiple differential bacterial genera. Alterations in the intestinal flora and metabolites in feces, therefore, may be responsible for DIO-induced bone loss.ConclusionsThe results indicated that changes in the abundance of GM abundance and fecal metabolites were correlated with DIO-induced bone loss, which might provide new insights into the DIO pathogenesis. The detailed regulatory role of GM and metabolites in DIO-induced bone loss needs to be explored further.
Background Silencing of the periostin gene (POSTN) can inhibit the biological process of several different cancers, and this inhibition may be related to down-regulation of PI3K/AKT signaling. However, the effect of POSTN on the progression, proliferation, and invasion of osteosarcoma (OS) remain unclear. Methods We used the Gene Expression Omnibus (GEO) database to screen datasets on in situ OS and lung metastases to identify core genes and potential pathways. We used additional bioinformatics tools to identify protein–protein interactions (PPIs) and gene networks, and selected the top seven genes whose expression had the strongest correlations with other genes. Results The results indicated that POSTN was a major hub gene. Subsequent analysis of gene expression profiles showed that POSTN was highly expressed in 262 cases with sarcoma and expression was closely related to poor prognosis. We also performed enrichment analysis to identify differentially expressed genes and used real-time PCR, western blotting, and immunohistochemistry analyses to measure POSTN expression in cells and tissues. Transfection of a POSTN-shRNA plasmid into cultured OS cells (Saos-2) effectively inhibited the proliferation, invasion, and migration of these cells. Taken together, our results suggest that POSTN may play a role in promoting the proliferation and metastasis of OS by activation of the PI3K/Akt signaling pathway. Conclusions Our results provide a preliminary characterization of the mechanism by which POSTN may regulate the migration and invasion of OS cells and also provide a theoretical basis for identifying biomarkers that have potential use for the diagnosis and treatment of OS.
Background The gut microbiota (GM) constitutes a critical factor in the maintenance of physiological homeostasis. Numerous studies have empirically demonstrated that the GM is closely associated with the onset and progression of osteoporosis (OP). Nevertheless, the characteristics of the GM and its metabolites related to different forms of OP are poorly understood. In the present study, we examined the changes in the GM and its metabolites associated with various types of OP as well as the correlations among them. Methods We simultaneously established rat postmenopausal, disuse-induced, and glucocorticoid-induced OP models. We used micro-CT and histological analyses to observe bone microstructure, three-point bending tests to measure bone strength, and enzyme-linked immunosorbent assay (ELISA) to evaluate the biochemical markers of bone turnover in the three rat OP models and the control. We applied 16s rDNA to analyze GM abundance and employed untargeted metabolomics to identify fecal metabolites in all four treatment groups. We implemented multi-omics methods to explore the relationships among OP, the GM, and its metabolites. Results The 16S rDNA sequencing revealed that both the abundance and alterations of the GM significantly differed among the OP groups. In the postmenopausal OP model, the bacterial genera g__Bacteroidetes_unclassified, g__Firmicutes_unclassified, and g__Eggerthella had changed. In the disuse-induced and glucocorticoid-induced OP models, g__Akkermansia and g__Rothia changed, respectively. Untargeted metabolomics disclosed that the GM-derived metabolites significantly differed among the OP types. However, a Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that it was mainly metabolites implicated in lipid and amino acid metabolism that were altered in all cases. An association analysis indicated that the histidine metabolism intermediate 4-(β-acetylaminoethyl)imidazole was common to all OP forms and was strongly correlated with all bone metabolism-related bacterial genera. Hence, 4-(β-acetylaminoethyl)imidazole might play a vital role in OP onset and progression. Conclusions The present work revealed the alterations in the GM and its metabolites that are associated with OP. It also disclosed the changes in the GM that are characteristic of each type of OP. Future research should endeavor to determine the causal and regulatory effects of the GM and the metabolites typical of each form of OP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.