Human carbonic anhydrase IX (CAIX) has evolved as a promising biomarker for cancer prognosis, due to its overexpression in various cancers and restricted expression in normal tissue. However, limited information is available on its biophysical behavior. The unfolding of CAIX in aqueous urea solution was studied using all-atom molecular dynamics simulation approach. The results of this study revealed a stable intermediate state along the unfolding pathway of CAIX. At intermediate concentrations of urea (2.0-4.0 M), the protein displays a native-like structure with a large population of its secondary structure and hydrophobic contacts remaining intact in addition to small confined overall motions. Beyond 4.0 M urea, the unfolding is more gradual and at 8.0 M urea the structure is largely collapsed due to the solvent effect. The hydrophobic contact analysis suggests that the contact in terminal α-helices is separated initially which propagates in the loss of contacts from centrally located β-sheets. The reduction of 60-65% tertiary contacts in 7.0-8.0 M urea suggested the presence of residual structure in unfolded state and is confirmed with structural snap shot. Free energy landscape analysis suggested that unfolding of CAIX exists through the different intermediate states.
Amyloid deposition of the microtubule-associated protein tau is associated with neurodegenerative diseases. In frontotemporal dementia with abnormal tau (FTD-tau), missense mutations in tau enhance its aggregation propensity. Here we describe the structural mechanism for how an FTD-tau S320F mutation drives spontaneous aggregation, integrating data from in vitro, in silico and cellular experiments. We find that S320F stabilizes a local hydrophobic cluster which allosterically exposes the 306VQIVYK311 amyloid motif; identify a suppressor mutation that destabilizes S320F-based hydrophobic clustering reversing the phenotype in vitro and in cells; and computationally engineer spontaneously aggregating tau sequences through optimizing nonpolar clusters surrounding the S320 position. We uncover a mechanism for regulating tau aggregation which balances local nonpolar contacts with long-range interactions that sequester amyloid motifs. Understanding this process may permit control of tau aggregation into structural polymorphs to aid the design of reagents targeting disease-specific tau conformations.
Misfolding and aggregation of Cu, Zn Superoxide Dismutase (SOD1) is often found in amyotrophic lateral sclerosis (ALS) patients. The central apo SOD1 barrel was involved in protein maturation and pathological aggregation in ALS. In this work, we employed atomistic molecular dynamics (MD) simulations to study the conformational dynamics of SOD1 monomer in different concentrations of trifluoroethanol (TFE). We find concentration dependence unusual structural and dynamical features, characterized by the local unfolding of SOD1. This partially unfolded structure is characterized by the exposure of hydrophobic core, is highly dynamic in nature, and is the precursor of aggregation seen in SOD1. Our computational studies supports the hypothesis of the formation of aggregation 'building blocks' by means of local unfolding of apo monomer as the mechanism of SOD1 fibrillar aggregation. The non-monotonic TFE concentration dependence of protein conformational changes was explored through simulation studies. Our results suggest that altered protein conformation and dynamics within its structure may underlie the aggregation of SOD1 in ALS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.