Capítulo 1: Descripción del proyecto 1.1 Introducción 1.2 Objetivos Capítulo 2: Contexto y descripción del problema de estudio 2.1 Contexto y descripción del problema. 2.2 Justificación. 2.3 Metodología propuesta. Capítulo 3: Marco referencial 3.1 Marco teórico.3.2 Estado del arte.
Marco conceptual.Capítulo 4: Caracterización del sistema de relocalización de los vehículos de servicio público taxi en una empresa en la ciudad de Barranquilla 4.1 Estudio de satisfacción de los usuarios frente al servicio público de taxi en la Ciudad. 4.2 Descripción de la empresa y funcionamiento del sistema de la prestación de servicio.Capítulo 5: Desarrollo del modelo matemático de relocalización de los vehículos de servicio público taxi en una empresa en la ciudad de Barranquilla 5.1 Modelo de referencia. 5.2 Modelo propuesto.
Escenarios alternativos de prueba.EVALUACIÓN DEL SISTEMA DE RELOCALIZACIÓN Capítulo 6: Análisis y resultados 6.1 Análisis de resultados obtenidos de la modelación.6.2 Estrategias de mejoramiento para el sistema de relocalización del servicio público taxi.
The use of evolutionary algorithms (EAs) to solve problems with multiple objectives (known as Vector Optimization Problems (VOPs)) has attracted much attention recently. Being population based approaches, EAs offer a means to find a group of pareto-optimal solutions in a single run. Differential Evolution (DE) is an EA that was developed to handle optimization problems over continuous domains. The objective of this paper is to introduce a novel Pareto Differential Evolution (PDE) algorithm to solve VOPs. The solutions provided by the proposed algorithm for five standard test problems, is competitive to nine known evolutionary multiobjective algorithms for solving VOPs.
In this paper, the issue of adapting probabilities for Evolutionary Algorithm (EA) search operators is revisited. A framework is devised for distinguishing between measurements of performance and the interpretation of those measurements for purposes of adaptation. Several examples of measurements and statistical interpretations are provided. Probability value adaptation is tested using an EA with 10 search operators against 10 test problems with results indicating that both the type of measurement and its statistical interpretation play significant roles in EA performance. We also find that selecting operators based on the prevalence of outliers rather than on average performance is able to provide considerable improvements to adaptive methods and soundly outperforms the non-adaptive case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.