During our ongoing studies of the reactions of toluene diisocyanate (2,4- and 2,6-diisocyanatotoluene, TDI) in vivo, it became apparent that reactive form(s) of these diisocyanates reach(es) the circulatory system after passage through the respiratory system. Based on recent work by others regarding the transcarbamoylation reactions of monoisocyanates, we hypothesized that the reactive form could be masked as an S-thiocarbamoylglutathione adduct of one or more of the isocyanato moieties. In this study, the glutathione adducts of 2,4- and 2,6-diisocyanatotoluene were synthesized under physiological conditions. Bis adducts were the major products when near-equimolar amounts of glutathione and the individual diisocyanato compounds were mixed at physiological pH, and were formed in high yield. Little to no mono adducts formed under these reaction conditions. The masses of the bis adducts were confirmed by electrospray mass spectrometry (MS), and 1H NMR analysis strongly suggested that the thiol of the cysteine residue of glutathione was the nucleophile in each case. The rates of solvolysis of the two bis adducts in aqueous buffer under conditions of physiological temperature and pH were determined, and electrospray MS analysis showed that the corresponding mono(glutathionyl)-TDIs were formed in these reactions. Incubation in vitro of each of the bis(glutathionyl)-TDI adducts with a 12 amino acid peptide (Thr-Cys-Val-Glu-Trp-Leu-Arg-Arg-Tyr-Leu-Lys-Asn) at pH 7.5 resulted in transfer of one mono(glutathionyl)-toluylisocyanato moiety to the peptide as detected by HPLC and on-line electrospray MS analyses. In both the solvolysis and transfer experiments, the 2,4-TDI-derived bis(glutathionyl) adduct reacted most quickly, while both the bis(glutathionyl)-2,6-TDI adduct and its transfer product with the peptide were more stable than their 2,4-TDI-derived counterparts. The results indicate high stoichiometry in formation and ready transfer to nucleophilic sites of protein, and suggest that the isocyanato moiety of both 2,4- and 2,6-TDI may be regenerated in vivo from their bis(glutathionyl) adducts. As a consequence, the thiol status of particular tissues may be a contributing factor to individual TDI toxicity susceptibility, and a mechanism by which toxicity at sites distant to the initial point of contact may be proposed.
Guinea pig hemoglobin (Hb) adducts of 2,4- and 2,6-toluene diisocyanate (2,4- and 2,6-TDI) were individually prepared, each at a Hb tetramer to diisocyanate ratio of 1:1, and compared with adducts of Hb from animals exposed to 1 ppm 2,4-TDI vapor. Each Hb sample was subjected to C4 HPLC chain/heme separation with UV detection. Survey of the LC fractions using an antiserum prepared to a heterologous TDI-protein indicated a difference in chain specificity and product types formed in vitro by the two isomers. Ionspray mass spectrometry (MS) revealed the chemistry of the adduction products. Carbamoylated products, formed from adduction by one TDI molecule (with one isocyanato group hydrolyzed to an amino group), were detected by MS with 2,4-TDI on each chain and with 2,6-TDI on the beta chain. Additionally, a quasi-molecular ion of a bis carbamoylation adduct was noted by MS in the in vitro 2,4-TDI-Hb adduct in the form of TDI-cross-linked alpha and beta chains. Ionspray MS analysis of the Hb isolated from guinea pigs exposed in vivo to 2,4-TDI indicated carbamoylation products with both the alpha and beta chains in which one of the two original isocyanato groups had been hydrolyzed to the amine. We also found evidence of an amine-nitroso adduct on the alpha chain in the in vivo sample. These results indicate that at least one of the isocyanato moieties (or a masked derivative) of 2,4-TDI survived passage through the lung, into the serum, and through the erythrocyte membrane to form adducts with Hb that were stable to dialysis, gel filtration, and reversed phase HPLC separation under acidic conditions. The presence of an apparent amine-nitroso adduct indicated in vivo formation of 2,4-diaminotoluene, a recognized animal carcinogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.