BACKGROUND Chronic obstructive pulmonary disease (COPD) is characterized by chronic bronchitic and emphysematous components. In one biophysical model, the concentration of mucin on the airway surfaces is hypothesized to be a key variable that controls mucus transport in healthy persons versus cessation of transport in persons with muco-obstructive lung diseases. Under this model, it is postulated that a high mucin concentration produces the sputum and disease progression that are characteristic of chronic bronchitis. METHODS We characterized the COPD status of 917 participants from the Subpopulations and Intermediate Outcome Measures in COPD Study (SPIROMICS) using questionnaires administered to participants, chest tomography, spirometry, and examination of induced sputum. Total mucin concentrations in sputum were measured with the use of size-exclusion chromatography and refractometry. In 148 of these participants, the respiratory secreted mucins MUC5AC and MUC5B were quantitated by means of mass spectrometry. Data from chronicbronchitis questionnaires and data on total mucin concentrations in sputum were also analyzed in an independent 94-participant cohort. RESULTS Mean (±SE) total mucin concentrations were higher in current or former smokers with severe COPD than in controls who had never smoked (3166±402 vs. 1515±152 μg per milliliter) and were higher in participants with two or more respiratory exacerbations per year than in those with zero exacerbations (4194±878 vs. 2458±113 μg per milliliter). The absolute concentrations of MUC5B and MUC5AC in current or former smokers with severe COPD were approximately 3 times as high and 10 times as high, respectively, as in controls who had never smoked. Receiver-operating-characteristic curve analysis of the association between total mucin concentration and a diagnosis of chronic bronchitis yielded areas under the curve of 0.72 (95% confidence interval [CI], 0.65 to 0.79) for the SPIROMICS cohort and 0.82 (95% CI, 0.73 to 0.92) for the independent cohort. CONCLUSIONS Airway mucin concentrations may quantitate a key component of the chronic bronchitis pathophysiologic cascade that produces sputum and mediates disease severity. Studies designed to explore total mucin concentrations in sputum as a diagnostic biomarker and therapeutic target for chronic bronchitis appear to be warranted. (Funded by the National Heart, Lung, and Blood Institute and others.)
The cellular behavior and toxicity effect of organometallic complexes depend largely on their peripheral ligands. In this study, we have synthesized a series of novel luminescent cationic iridium(III) complexes by tuning the ancillary N(∧)N ligand based on a structure [Ir(ppy)2(N(∧)N)](+) (ppy = 1-phenyl-pyridine; N(∧)N = 2,2'-bipyridine (bpy, 1) or phenanthroline (phen, 2) or 4,7-diphenyl-1,10- phenanthroline (DIP, 3)). As the size of coordinated N(∧)N ligand increases, absorbance/emission efficiency, quantum yields, lipophilicity, and cell uptake rates of the complexes also increase, in a general order: 3 > 2 > 1. All three complexes display anticancer activity, with 3 exhibiting the highest cellular uptake efficiency and the greatest cytotoxic activities in several cancer cell lines with IC50s lower than that of cisplatin. Because of its strong hydrophobic nature, the death inducer 3 was found to accumulate favorably to endoplasmic reticulum (ER) and to cause ER stress in cells. The fast cytosolic release of calcium from stressed ER disturbed the morphology and function of mitochondria, initiating an intrinsic apoptotic pathway. Understanding of the cell death mechanism would help further structure-activity optimization on these novel Ir(III) complexes as emerging cancer therapeutics.
The epithelial sodium channel (ENaC) is responsible for Na(+) and fluid absorption across colon, kidney, and airway epithelia. Short palate lung and nasal epithelial clone 1 (SPLUNC1) is a secreted, innate defense protein and an autocrine inhibitor of ENaC that is highly expressed in airway epithelia. While SPLUNC1 has a bactericidal permeability-increasing protein (BPI)-type structure, its NH2-terminal region lacks structure. Here we found that an 18 amino acid peptide, S18, which corresponded to residues G22-A39 of the SPLUNC1 NH2 terminus inhibited ENaC activity to a similar degree as full-length SPLUNC1 (∼2.5 fold), while SPLUNC1 protein lacking this region was without effect. S18 did not inhibit the structurally related acid-sensing ion channels, indicating specificity for ENaC. However, S18 preferentially bound to the βENaC subunit in a glycosylation-dependent manner. ENaC hyperactivity is contributory to cystic fibrosis (CF) lung disease. Unlike control, CF human bronchial epithelial cultures (HBECs) where airway surface liquid (ASL) height was abnormally low (4.2 ± 0.6 μm), addition of S18 prevented ENaC-led ASL hyperabsorption and maintained CF ASL height at 7.9 ± 0.6 μm, even in the presence of neutrophil elastase, which is comparable to heights seen in normal HBECs. Our data also indicate that the ENaC inhibitory domain of SPLUNC1 may be cleaved away from the main molecule by neutrophil elastase, suggesting that it may still be active during inflammation or neutrophilia. Furthermore, the robust inhibition of ENaC by the S18 peptide suggests that this peptide may be suitable for treating CF lung disease.
Mucosal protection of the gallbladder is vital yet we know very little about the mechanisms involved. In domestic dogs, an emergent syndrome referred to as gallbladder mucocele formation is characterized by excessive secretion of abnormal mucus that results in obstruction and rupture of the gallbladder. The cause of gallbladder mucocele formation is unknown. In these first mechanistic studies of this disease, we investigated normal and mucocele-forming dog gallbladders to determine the source, identity, biophysical properties, and protein associates of the culprit mucins with aim to identify causes for abnormal mucus behavior. We established that mucocele formation involves an adoptive excess secretion of gel forming mucins with abnormal properties by the gallbladder epithelium. The mucus is characterized by a disproportionally significant increase in Muc5ac relative to Muc5b, defective mucin un-packaging, and mucin-interacting innate defense proteins that are capable of dramatically altering the physical and functional properties of mucus. These findings provide an explanation for abnormal mucus behavior and based on similarity to mucus observed in the airways of people with cystic fibrosis, suggest that abnormal mechanisms for maintenance of gallbladder epithelial hydration may be an instigating factor for mucocele formation in dogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.