Potentilla discolor Bunge (PDB), a perennial herb, has been used as a traditional Chinese medicine in the therapy of many diseases. The aim of the current study was to investigate the effect of PDB water extract on systemic inflammation and gut microbiota in type 2 diabetic (T2D) mice induced by high-fat diet (HFD) and streptozotocin (STZ) injection. C57BL/6J mice were randomly divided into a normal diet (ND) group, T2D group, and PDB group (diabetic mice treated with PDB water extract at a dose of 400 mg/kg body weight). Results showed that PDB significantly decreased the levels of lipopolysaccharide (LPS) and pro-inflammatory cytokines in serum. Further investigation showed that PDB significantly reduced the ratio of Firmicutes/Bacteroidetes and the relative abundance of Proteobacteria in fecal samples of diabetic mice. In addition, PDB notably alleviated intestinal inflammation as evidenced by decreased expression of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear factor-κB (NF-κB), and inflammatory cytokines. PDB also reversed the decreased expression of intestinal mucosal tight junction proteins including Claudin3, ZO-1, and Occludin. Meanwhile, the levels of fecal acetic acid and butyric acid and their specific receptors including G-protein-coupled receptor (GPR) 41 and 43 expression in the colon were also increased after PDB treatment. Our results indicated that PDB might serve as a potential functional ingredient against diabetes and related inflammation.
This study evaluated the effects and the underlying mechanisms of casein glycomacropeptide hydrolysate (GHP) on high-fat diet-fed and streptozotocin-induced type 2 diabetes (T2D) in C57BL/6J mice. Results showed that 8-week GHP supplementation significantly decreased fasting blood glucose levels, restored insulin production, improved glucose tolerance and insulin tolerance, and alleviated dyslipidemia in T2D mice. In addition, GHP supplementation reduced the concentration of lipopolysaccharides (LPSs) and pro-inflammatory cytokines in serum, which led to reduced systematic inflammation. Furthermore, GHP supplementation increased muscle glycogen content in diabetic mice, which was probably due to the regulation of glycogen synthase kinase 3 beta and glycogen synthase. GHP regulated the insulin receptor substrate-1/phosphatidylinositol 3-kinase/protein kinase B pathway in skeletal muscle, which promoted glucose transporter 4 (GLUT4) translocation. Moreover, GHP modulated the overall structure and diversity of gut microbiota in T2D mice. GHP increased the Bacteroidetes/Firmicutes ratio and the abundance of S24-7, Ruminiclostridium, Blautia and Allobaculum, which might contribute to its antidiabetic effect. Taken together, our findings demonstrate that the antidiabetic effect of GHP may be associated with the recovery of skeletal muscle insulin sensitivity and the regulation of gut microbiota.
Scope: Milk fat globule membrane (MFGM), which contains abundant polar lipids and glycoproteins, can narrow the gap in growth and development between breast-fed and infant-formula-fed babies. The objective of this study is to evaluate the effect of MFGM supplementation in infant formula on intestinal epithelium maturation, tight junctions, and gut colonization in rat pups. Methods and results: Sprague Dawley rat pups consume one of the five diets from postnatal day 8, including rat breastfeeding (BF), infant formula (IF), and infant formula containing MFGM at 260 mg kg −1 body weight (BW), 520 mg kg −1 BW, or 1040 mg kg −1 BW. Results show that MFGM supplementation in infant formula can facilitate intestinal mucosal barrier maturation via promoting intestinal proliferation and differentiation, and increasing tight junction proteins. In addition, compared with that of the IF pups, the intestinal flora composition of MFGM-supplemented pups is more similar to that of BF pups. Conclusion: MFGM supplementation in infant formula can restore the intestinal development in infant-formula-fed pups, which suggests that the supplementation of MFGM in infant formula can better mimic breast milk.
Potentilla discolor Bunge, as a traditional Chinese medicine, exhibits many phytochemical activities. The aim of the present study was to investigate the effects of Potentilla discolor Bunge water extract (PDBW) and its underlying mechanisms on gluconeogenesis and glycogen synthesis in high-fat diet/streptozotocin (HFD/STZ)-induced type 2 diabetic mice. LC-MS/MS analyses of PDBW identified 6 major compounds including apigenin-7-O-β-D-glucoside, epicatechin, quercetin 3-O-β-D-glucuronide, kaempferol-3-O-β-D-glucopyranoside, scutellarin, and quercitrin. In the study, a mouse model of type 2 diabetes was induced by 4-week HFD combined with STZ (40 mg/kg body weight) for 5 days. After oral administration of PDBW at 400 mg/kg body weight daily for 8 weeks, the mice with type 2 diabetes showed significant decrease in the levels of fasting blood glucose and glycated hemoglobin A1c (HbA1c), and increase in the insulin level. PDBW improved the glucose tolerance, insulin sensitivity and lipid profiles. Furthermore, PDBW inhibited the mRNA levels of key gluconeogenic enzymes [phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase)] in liver. PDBW also promoted glycogen synthesis by raising the liver glycogen content, decreasing the phosphorylation of glycogen synthase (GS) and increasing the phosphorylation of glycogen synthase kinase3β (GSK3β). Besides, PDBW induced the activation of protein kinase B (Akt) and AMP-activated protein kinase (AMPK), which might explain changes in the phosphorylation of above enzymes. In summary, PDBW supplementation ameliorates metabolic disorders in a HFD/STZ diabetic mouse model, suggesting the potential application of PDBW in prevention and amelioration of type 2 diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.