Social exclusion, keeping free riders from benefit sharing, plays an important role in sustaining cooperation in our world. Here we propose two different exclusion regimes, namely, peer exclusion and pool exclusion, to investigate the evolution of social exclusion in finite populations. In the peer exclusion regime, each excluder expels all the defectors independently, and thus bears the total cost on his own, while in the pool exclusion regime, excluders spontaneously form an institution to carry out rejection of the free riders, and each excluder shares the cost equally. In a public goods game containing only excluders and defectors, it is found that peer excluders outperform pool excluders if the exclusion costs are small, and the situation is converse once the exclusion costs exceed some critical points, which holds true for all the selection intensities and different update rules. Moreover, excluders can dominate the whole population under a suitable parameters range in the presence of second-order free riders (cooperators), showing that exclusion has prominent advantages over common costly punishment. More importantly, our finding indicates that the group exclusion mechanism helps the cooperative union to survive under unfavorable conditions. Our results may give some insights into better understanding the prevalence of such a strategy in the real world and its significance in sustaining cooperation.
How cooperation emerges and is stabilized has been a puzzling problem to biologists and sociologists since Darwin. One of the possible answers to this problem lies in the mobility patterns. These mobility patterns in previous works are either random-like or driven by payoff-related properties such as fitness, aspiration, or expectation. Here we address another force which drives us to move from place to place: reputation. To this end, we propose a reputation-based model to explore the effect of migration on cooperation in the contest of the prisoner's dilemma. In this model, individuals earn their reputation scores through previous cooperative behaviors. An individual tends to migrate to a new place if he has a neighborhood of low reputation. We show that cooperation is promoted for relatively large population density and not very large temptation to defect. A higher mobility sensitivity to reputation is always better for cooperation. A longer reputation memory favors cooperation, provided that the corresponding mobility sensitivity to reputation is strong enough. The microscopic perception of the effect of this mechanism is also given. Our results may shed some light on the role played by migration in the emergence and persistence of cooperation.
In this work, the high crystalline copper oxide (CuO) nanoparticles were fabricated by a hydrothermal method, and their structural properties were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The sensing results show that CuO nanoparticles exhibit enhanced sensitivity and good selectivity for hydrogen sulfide (H2S) gas at a low temperature. There are two working mechanisms involved in the H2S sensing based on CuO nanoparticle sensors. They are the H2S oxidation mechanism and the copper sulphide (CuS) formation mechanism, respectively. The two sensing mechanisms collectively enhance the sensor’s response in the H2S sensing process. The Cu–S bonding is stable and cannot break spontaneously at a low temperature. Therefore, the CuS formation inhibits the sensor’s recovery process. Such inhibition gradually enhances as the gas concentration increases from 0.2 ppm to 5 ppm, and it becomes weaker as the operating temperature rises from 40 °C to 250 °C. The XPS results confirmed the CuS formation phenomenon, and the micro Raman spectra demonstrated that the formation of CuS bonding and its decomposition can be effectively triggered by a thermal effect. Gas-sensing mechanism analysis supplied abundant cognition for the H2S sensing phenomena based on CuO materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.