Stereoselective [1 + 1 + 4 + 4] dimerization of 1-styrylnaphthols has been developed by using Selectfluor as the oxidant for the first time. The reaction was compatible with various functional groups, giving a class of ethanodinaphtho[b,f][1,5]dioxocines with novel 3D skeletons. DFT calculations indicate that this method merges an intriguing stereoselective intermolecular 1 + 1 radical coupling to construct a bridged C–C bond and then an intramolecular [4 + 4] formal cycloaddition of the in situ generated o-quinone methide intermediate.
Multi-state n-electron valence state second order perturbation theory (MS-NEVPT2) was utilized to reveal the photorelaxation pathways of 4-(N,N-dimethylamino)-4′-nitrostilbene (DANS) upon S1 excitation. Within the interwoven networks of five S1/S0 and three T2/T1 conical intersections (CIs), and three S1/T2, one S1/T1 and one S0/T1 intersystem crossings (ISCs), those competing nonadiabatic decay pathways play different roles in trans-to-cis and cis-to-trans processes, respectively. After being excited to the Franck–Condon (FC) region of the S1 state, trans-S1-FC firstly encounters an ultrafast conversion to quinoid form. Subsequently, the relaxation mainly proceeds along the triplet pathway, trans-S1-FC → ISC-S1/T2-trans → CI-T2/T1-trans → ISC-S0/T1-twist → trans- or cis-S0. The singlet relaxation pathway mediated by CI-S1/S0-twist-c is hindered by the prominent energy barrier on S1 surface and by the reason that CI-S1/S0-trans and CI-S1/S0-twist-t are both not energetically accessible upon S1 excitation. On the other hand, the cis-S1-FC lies at the top of steeply decreasing potential energy surfaces (PESs) towards the CI-S1/S0-twist-c and CI-S1/S0-DHP regions; therefore, the initial twisting directions of DN and DAP moieties determine the branching ratio between αC=C twisting (cis-S1-FC → CI-S1/S0-twist-c → trans- or cis-S0) and DHP formation relaxation pathways (cis-S1-FC → CI-S1/S0-DHP → DHP-S0) on the S1 surface. Moreover, the DHP formation could also take place via the triplet relaxation pathway, cis-S1-FC → ISC-S1/T1-cis → DHP-T1 → DHP-S0, however, which may be hindered by insufficient spin-orbit coupling (SOC) strength. The other triplet pathways for cis-S1-FC mediated by ISC-S1/T2-cis are negligible due to the energy or geometry incompatibility of possible consecutive stepwise S1 → T2 → T1 or S1 → T2 → S1 processes. The present study reveals photoisomerization dynamic pathways via conical intersection and intersystem crossing networks and provides nice physical insight into experimental investigation of DANS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.