This paper discusses the latest developments in wide-area frequency-based event location using FNET. FNET, meaning "Internet Based Frequency Monitoring Network," is a low cost and quickly deployable wide-area frequency measurement system with high dynamic accuracy. This project demonstrated the feasibility of using information from FNET to estimate the location of events in the electric grid. An on-line real time event detection tool using least squares methods was developed and tested on data from FNET. This paper outlines the methods used along with an examination of implementation feasibility.
FBG shape sensors based on soft substrates are currently one of the research focuses of wing shape reconstruction, where soft substrates and torque are two important factors affecting the performance of shape sensors, but the related analysis is not common. A high-precision soft substrates shape sensor based on dual FBGs is designed. First, the FBG soft substrate shape sensor model is established to optimize the sensor size parameters and get the optimal solution. The two FBG cross-laying method is adopted to effectively reduce the influence of torque, the crossover angle between the FBGs is 2α, and α = 30° is selected as the most sensitive angle to the torquer response. Second, the calibration test platform of this shape sensor is built to obtain the linear relationship among the FBG wavelength drift and curvature, rotation radian loaded vertical force and torque. Finally, by using the test specimen shape reconstruction test, it is verified that this shape sensor can improve the shape reconstruction accuracy, and that its reconstruction error is 6.13%, which greatly improves the fit of shape reconstruction. The research results show that the dual FBG high-precision shape sensor successfully achieves high accuracy and reliability in shape reconstruction.
To reduce the dependence of real-time deformation monitoring and shape reconstruction of flexible planar structures on experience, mathematical models, specific structural curvature (shape) sensors, etc., we propose a reconstruction approach based on FBG and a data-driven model; with the aid of ANSYS finite element software, a simulation model was built, and training samples were collected. After the machine learning training, the mapping relationship was established, which is between the strain and the deformation variables (in three directions of the x-, y-, z-axis) of each point of the surface of the flexible planar structure. Four data-driven models were constructed (linear regression, regression tree, integrated tree, and BP neural network) and comprehensively evaluated; the predictive value of the BP neural network was closer to the true value (R2 = 0.9091/0.9979/0.9964). Finally, the replication experiment on the flexible planar structure specimen showed that the maximum predictive error in the x-, y-, and z-axis coordinates were 2.93%, 35.59%, and 16.21%, respectively. The predictive results are highly consistent with the expected results of flexible planar structure deformation monitoring and shape reconstruction in the existing test environment. The method provides a new high-precision method for the real-time monitoring and shape reconstruction of flexible planar structures.
To improve the accuracy of deformation perception and shape reconstruction of flexible thin-walled structures, this paper proposes a method based on the combination of FOSS (fiber optic sensor system) and machine learning. In this method, the sample collection of strain measurement and deformation change at each measuring point of the flexible thin-walled structure was completed by ANSYS finite element analysis. The outliers were removed by the OCSVM (one-class support vector machine) model, and the unique mapping relationship between the strain value and the deformation variables (three directions of x-, y-, and z-axis) at each point was completed by a neural-network model. The test results show that the maximum error of the measuring point in the direction of the three coordinate axes: the x-axis is 2.01%, the y-axis is 29.49%, and the z-axis is 15.52%. The error of the coordinates in the y and z directions was large, and the deformation variables were small, the reconstructed shape had good consistency with the deformation state of the specimen under the existing test environment. This method provides a new idea with high accuracy for real-time monitoring and shape reconstruction of flexible thin-walled structures such as wings, helicopter blades, and solar panels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.