This paper is concerned with the study of combined sizing and energy management algorithms for electric vehicles (EVs) endowed with batteries and supercapacitors (SCs). The main goal is to find the number of cells of each source that minimizes the installation and running costs of the EV, taking into account the performance requirements specified for the vehicle and the technical constraints of the energy sources. To tackle this problem, two methodologies will be investigated. The first considers a filter-based approach to perform the power split among the sources; it will be shown that, under some practical assumptions, the resultant sizing problem can be posed as a linear programming problem and solved using efficient numerical techniques. The second methodology employs an optimal noncausal energy management, which, when integrated with the sizing problem, yields a nonlinear optimization problem. These two methodologies will be then applied to size the storage unit of a small EV. The results indicate that the filter-based approach, although simple and numerically efficient, generally requires an oversized storage unit. Furthermore, it was also concluded that, if the range requirements of the EV are not very high (below 50 km, in our case study), the use of SCs enables energy savings of up to 7.8%.
BackgroundAcute kidney injury (AKI) has been hard to assess due to the lack of standard definitions. Recently, the Risk, Injury, Failure, Loss and End-Stage Kidney (RIFLE) classification has been proposed to classify AKI in a number of clinical settings. This study aims to estimate the frequency and levels of severity of AKI and to study its association with patient mortality and length of stay (LOS) in a cohort of trauma patients needing intensive care.MethodsBetween August 2001 and September 2007, 436 trauma patients consecutively admitted to a general intensive care unit (ICU), were assessed using the RIFLE criteria. Demographic data, characteristics of injury, and severity of trauma variables were also collected.ResultsHalf of all ICU trauma admissions had AKI, which corresponded to the group of patients with a significantly higher severity of trauma. Among patients with AKI, RIFLE class R (Risk) comprised 47%, while I (Injury) and F (Failure) were, 36% and 17%, respectively. None of these patients required renal replacement therapy. No significant differences were found among these three AKI classes in relation to patient's age, gender, type and mechanism of injury, severity of trauma or mortality. Nevertheless, increasing severity of acute renal injury was associated with a longer ICU stay.ConclusionsAKI is a common feature among trauma patients requiring intensive care. Although the development of AKI is associated with an increased LOS it does not appear to influence patient mortality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.