Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. Regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the DRG microenvironment influences the different regenerative capacities after injury to peripheral or central axons remains largely unknown. To answer this question, we performed a single-cell transcriptional profiling of mouse DRG in response to peripheral (sciatic nerve crush) and central axon injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to the three types of injuries. All injuries increased the proportion of a cell type that shares features of both immune cells and glial cells. A distinct subset of satellite glial cells (SGC) appeared specifically in response to peripheral nerve injury. Activation of the PPARα signaling pathway in SGC, which promotes axon regeneration after peripheral nerve injury, failed to occur after central axon injuries. Treatment with the FDA-approved PPARα agonist fenofibrate increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single-cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries or disease.
Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGC) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and it surrounding glial coat. Morphological and molecular changes in SGC have been observed in multiple pathological conditions such as inflammation, chemotherapy-induced neuropathy, viral infection and nerve injuries. There is evidence that changes in SGC contribute to chronic pain by augmenting neuronal activity in various rodent pain models. SGC also play a critical role in axon regeneration. Whether findings made in rodent model systems are relevant to human physiology have not been investigated.Here we present a detailed characterization of the transcriptional profile of SGC in mouse, rat and human at the single cell level. Our findings suggest that key features of SGC in rodent models are conserved in human. Our study provides the potential to leverage on rodent SGC properties and identify potential targets for the treatment of nerve repair and alleviation of painful conditions.
Sensory neurons with cell bodies in dorsal root ganglia (DRG) represent a useful model to study axon regeneration. Whereas regeneration and functional recovery occurs after peripheral nerve injury, spinal cord injury or dorsal root injury is not followed by regenerative outcomes. This results in part from a failure of central injury to elicit a pro-regenerative response in sensory neurons. However, regeneration of sensory axons in peripheral nerves is not entirely cell autonomous. Whether the different regenerative capacities after peripheral or central injury result in part from a lack of response of macrophages, satellite glial cells (SGC) or other non-neuronal cells in the DRG microenvironment remains largely unknown. To answer this question, we performed a single cell transcriptional profiling of DRG in response to peripheral (sciatic nerve crush) and central injuries (dorsal root crush and spinal cord injury). Each cell type responded differently to peripheral and central injuries. Activation of the PPAR signaling pathway in SGC, which promotes axon regeneration after nerve injury, did not occur after central injuries. Treatment with the FDA-approved PPARα agonist fenofibrate, increased axon regeneration after dorsal root injury. This study provides a map of the distinct DRG microenvironment responses to peripheral and central injuries at the single cell level and highlights that manipulating non-neuronal cells could lead to avenues to promote functional recovery after CNS injuries.
Sensory neurons located in dorsal root ganglia (DRG) convey sensory information from peripheral tissue to the brain. After peripheral nerve injury, sensory neurons switch to a regenerative state to enable axon regeneration and functional recovery. This process is not cell autonomous and requires glial and immune cells. Macrophages in the DRG (DRGMacs) accumulate in response to nerve injury, but their origin and function remain unclear. Here, we mapped the fate and response of DRGMacs to nerve injury using macrophage depletion, fate-mapping, and single-cell transcriptomics. We identified three subtypes of DRGMacs after nerve injury in addition to a small population of circulating bone-marrow–derived precursors. Self-renewing macrophages, which proliferate from local resident macrophages, represent the largest population of DRGMacs. The other two subtypes include microglia-like cells and macrophage-like satellite glial cells (SGCs) (Imoonglia). We show that self-renewing DRGMacs contribute to promote axon regeneration. Using single-cell transcriptomics data and CellChat to simulate intercellular communication, we reveal that macrophages express the neuroprotective and glioprotective ligand prosaposin and communicate with SGCs via the prosaposin receptor GPR37L1. These data highlight that DRGMacs have the capacity to self-renew, similarly to microglia in the Central nervous system (CNS) and contribute to promote axon regeneration. These data also reveal the heterogeneity of DRGMacs and their potential neuro- and glioprotective roles, which may inform future therapeutic approaches to treat nerve injury.
Peripheral sensory neurons located in dorsal root ganglia relay sensory information from the peripheral tissue to the brain. Satellite glial cells (SGC) are unique glial cells that form an envelope completely surrounding each sensory neuron soma. This organization allows for close bidirectional communication between the neuron and it surrounding glial coat. Morphological and molecular changes in SGC have been observed in multiple pathological conditions such as inflammation, chemotherapy-induced neuropathy, viral infection and nerve injuries. There is evidence that changes in SGC contribute to chronic pain by augmenting neuronal activity in various rodent pain models. SGC also play a critical role in axon regeneration. Whether findings made in rodent model systems are relevant to human physiology have not been investigated. Here we present a detailed characterization of the transcriptional profile of SGC in mouse, rat and human at the single cell level. Our findings suggest that key features of SGC in rodent models are conserved in human. Our study provides the potential to leverage on rodent SGC properties and identify potential targets for the treatment of nerve repair and alleviation of painful conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.