Synaptic dysfunction plays a central role in Alzheimer's disease (AD), since it drives the cognitive decline. An association between a polymorphism of the adenosine A receptor (AR) encoding gene-ADORA2A, and hippocampal volume in AD patients was recently described. In this study, we explore the synaptic function of AR in age-related conditions. We report, for the first time, a significant overexpression of AR in hippocampal neurons of aged humans, which is aggravated in AD patients. A similar profile of AR overexpression in rats was sufficient to drive age-like memory impairments in young animals and to uncover a hippocampal LTD-to-LTP shift. This was accompanied by increased NMDA receptor gating, dependent on mGluR5 and linked to enhanced Ca influx. We confirmed the same plasticity shift in memory-impaired aged rats and APP/PS1 mice modeling AD, which was rescued upon AR blockade. This AR/mGluR5/NMDAR interaction might prove a suitable alternative for regulating aberrant mGluR5/NMDAR signaling in AD without disrupting their constitutive activity.
We report that in Drosophila, gamma‐tubulin is required for the structure as well as the function of microtubule organizing centres (MTOCs). This conclusion is based on the identification and phenotypic characterization of a mutant allele of the gamma‐tubulin gene located at region 23C of the polytene chromosome map. This mutation, which we have called gamma‐tub23CPl, is caused by the insertion of a P‐element within the 5′ untranslated leader of the gamma‐tubulin transcript. Northern and Western analysis show that gamma‐tub23CPl is either a null or a very severe hypomorph as no gamma‐tubulin mRNA or protein can be detected in mutant individuals. Visualization of DNA, MTOCs and microtubules by confocal laser scanning microscopy of cells from individuals homozygous for gamma‐tub23CPl reveals a series of phenotypic abnormalities. Some of these are similar to those observed after disruption of gamma‐tubulin function in other organisms, including mitotic arrest and a dramatic decrease in the number of microtubules, but, in addition, we have observed that mutation in this gene also results in highly abnormal MTOCs which show a variety of shapes and sizes which we never observed in wild type cells. These results show that gamma‐tubulin is required for both structural and functional roles in the MTOCs.
Background Little information is available about the geo-economic variations in demographics, management, and outcomes of patients with acute respiratory distress syndrome (ARDS). We aimed to characterise the effect of these geo-economic variations in patients enrolled in the Large Observational Study to Understand the Global Impact of Severe Acute Respiratory Failure (LUNG SAFE). Methods LUNG SAFE was done during 4 consecutive weeks in winter, 2014, in a convenience sample of 459 intensivecare units in 50 countries across six continents. Inclusion criteria were admission to a participating intensive-care unit (including transfers) within the enrolment window and receipt of invasive or non-invasive ventilation. One of the trial's secondary aims was to characterise variations in the demographics, management, and outcome of patients with ARDS. We used the 2016 World Bank countries classification to define three major geo-economic groupings, namely European high-income countries (Europe-High), high-income countries in the rest of the world (rWORLD-High), and middle-income countries (Middle). We compared patient outcomes across these three groupings. LUNG SAFE is registered with ClinicalTrials.gov, number NCT02010073. Findings Of the 2813 patients enrolled in LUNG SAFE who fulfilled ARDS criteria on day 1 or 2, 1521 (54%) were recruited from Europe-High, 746 (27%) from rWORLD-High, and 546 (19%) from Middle countries. We noted significant geographical variations in demographics, risk factors for ARDS, and comorbid diseases. The proportion of patients with severe ARDS or with ratios of the partial pressure of arterial oxygen (PaO 2) to the fractional concentration of oxygen in inspired air (F I O 2) less than 150 was significantly lower in rWORLD-High countries than in the two other regions. Use of prone positioning and neuromuscular blockade was significantly more common in Europe-High countries than in the other two regions. Adjusted duration of invasive mechanical ventilation and length of stay in the intensive-care unit were significantly shorter in patients in rWORLD-High countries than in Europe-High or Middle countries. High gross national income per person was associated with increased survival in ARDS; hospital survival was significantly lower in Middle countries than in Europe-High or rWORLD-High countries. Interpretation Important geo-economic differences exist in the severity, clinician recognition, and management of ARDS, and in patients' outcomes. Income per person and outcomes in ARDS are independently associated.
The metaphase-anaphase transition during mitosis is carefully regulated in order to assure high-fidelity transmission of genetic information to the daughter cells. A surveillance mechanism known as the metaphase checkpoint (or spindle-assembly checkpoint) monitors the attachment of kinetochores to the spindle microtubules, and inhibits anaphase onset until all chromosomes have achieved a proper bipolar orientation on the spindle. Defects in this checkpoint lead to premature anaphase onset, and consequently to greatly increased rates of aneuploidy. Here we show that the Drosophila kinetochore components Rough deal (Rod) and Zeste-White 10 (Zw10) are required for the proper functioning of the metaphase checkpoint in flies. Drosophila cells lacking either ROD or Zw10 exhibit a phenotype that is similar to that of bub1 mutants - they do not arrest in metaphase in response to spindle damage, but instead separate sister chromatids, degrade cyclin B and exit mitosis. These are the first checkpoint components to be identified that do not have obvious homologues in budding yeast.
Abnormal accumulation of aggregated α-synuclein (aSyn) is a hallmark of sporadic and familial Parkinson's disease (PD) and related synucleinopathies. Recent studies suggest a neuroprotective role of adenosine A2A receptor (A2AR) antagonists in PD. Nevertheless, the precise molecular mechanisms underlying this neuroprotection remain unclear. We assessed the impact of A2AR blockade or genetic deletion (A2AR KO) on synaptic plasticity and neuronal cell death induced by aSyn oligomers. We found that impairment of LTP associated with aSyn exposure was rescued in A2AR KO mice or upon A2AR blockade, through an NMDA receptor-dependent mechanism. The mechanisms underlying these effects were evaluated in SH-SY5Y cells overexpressing aSyn and rat primary neuronal cultures exposed to aSyn. Cell death in both conditions was prevented by selective A2AR antagonists. Interestingly, blockade of these receptors did not interfere with aSyn oligomerization but, instead, reduced the percentage of cells displaying aSyn inclusions. Altogether, our data raise the possibility that the well-documented effects of A2AR antagonists involve the control of the latter stages of aSyn aggregation, thereby preventing the associated neurotoxicity. These findings suggest that A2AR represent an important target for the development of effective drugs for the treatment of PD and related synucleinopathies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.