Cellulase genes have been reported not only from fungi, bacteria and plant, but also from some invertebrate animals. Here, two cellulase (endo-beta-1,4-glucanase, EC 3.2.1.4) genes, eg27I and eg27II, were cloned from the freshwater snail Ampullaria crossean cDNA using degenerate primers. The nucleotide sequences of the two genes shared 94.5% identity. The open reading frames of both genes consisted of 588 bp, encoding 195 amino acids. Both EG27I and EG27II belong to the glycoside hydrolase family 45, and each lacks a carbohydrate-binding module. The presence of introns demonstrated a eukaryotic origin of the EG27 gene, and, in addition, successful cloning of EG27 cDNA supported endogenous production of EG27 cellulase by Ampullaria crossean. Investigation of the EG27 cDNA from A. crossean will provide further information on GHF45 cellulases.
Two novel endo-beta-1,4-glucanases, EG45 and EG27, were isolated from the gastric juice of mollusca, Ampullaria crossean, by anion exchange, hydrophobic interaction, gel filtration and a second round of anion exchange chromatography. The purified proteins EG45 and EG27 appeared as a single band on sodium dodecylsulfate polyacrylamide gel electrophoresis with a molecular mass of 45 kDa and 27 kDa, respectively. The optimum pH for CMC activity was 5.5 for EG45 and 4.4-4.8 for EG27. The optimum temperature range for EG27 was broad, between 50 degrees and 60 degrees; for EG45 it was 50 degrees. The analysis on the stability of these two endo-beta-1,4-glucanases showed that EG27 was acceptably stable at pH 3.0-11.0 even when the incubation time was prolonged to 24 h at 30 degrees, whereas EG45 remained relatively stable at pH 5.0-8.0. About 85% of the activity of EG27 could be retained upon incubation at 60 degrees for 24 h. However, less than 10% residual activity of EG45 was detected at 50 degrees. Among different kinds of substrates, both enzymes showed a high preference for carboxymethyl cellulose. EG45, in particular, showed a carboxymethyl cellulose hydrolytic activity of 146.5 IU/mg protein. Both enzymes showed low activities to xylan (from oat spelt) and Sigmacell 101, and they were inactive to p-nitrophenyl-beta-D-cellobioside, salicin and starch.
A dispersed, rye-specific element has been used to isolate clones of rye origin from wheat plants containing only a single rye chromosome arm or segment. In this way a set of 23 YAC clones has been isolated from the short arm of rye chromosome 1 (1RS). This technique was extended to isolate clones from a small region of 1RS that contains a large number of agronomically important genes. The targeted cloning method allowed the isolation of 26 classes of lambda clones representing about 5% of the region. Ten of the lambda clones could be mapped to segments within this region. A third example of the application of this technique involved the isolation of clones from a very small but fully functional rye chromosome, the midget chromosome. These clones have allowed the confirmation of the origin of the midget from 1RL, and may provide a tool for the isolation of structural elements of cereal chromosomes. This technique allows the identification of clone libraries for any rye chromosome or chromosome arm, since substitution, addition and translocation lines are available for all rye chromosomes. Furthermore, the technique allows isolation of clones derived from segments of the rye genome recombined into wheat. The method is technically simple and both lambda and YAC libraries can be constructed. Synteny between the genomes of the cereals allows region-specific libraries from rye to be used to target regions of the wheat and barley genomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.