Deep learning has been demonstrated to achieve excellent results for image classification and object detection. However, the impact of deep learning on video analysis (e.g. action detection and recognition) has been limited due to complexity of video data and lack of annotations. Previous convolutional neural networks (CNN) based video action detection approaches usually consist of two major steps: frame-level action proposal generation and association of proposals across frames. Also, most of these methods employ two-stream CNN framework to handle spatial and temporal feature separately. In this paper, we propose an endto-end deep network called Tube Convolutional Neural Network (T-CNN) for action detection in videos. The proposed architecture is a unified deep network that is able to recognize and localize action based on 3D convolution features. A video is first divided into equal length clips and next for each clip a set of tube proposals are generated based on 3D Convolutional Network (ConvNet) features. Finally, the tube proposals of different clips are linked together employing network flow and spatio-temporal action detection is performed using these linked video proposals. Extensive experiments on several video datasets demonstrate the superior performance of T-CNN for classifying and localizing actions in both trimmed and untrimmed videos compared to state-of-the-arts.
Recent years have witnessed a significant increase in the online sharing of medical information, with videos representing a large fraction of such online sources. Previous studies have however shown that more than half of the health-related videos on platforms such as YouTube contain misleading information and biases. Hence, it is crucial to build computational tools that can help evaluate the quality of these videos so that users can obtain accurate information to help inform their decisions. In this study, we focus on the automatic detection of misinformation in YouTube videos. We select prostate cancer videos as our entry point to tackle this problem. The contribution of this paper is twofold. First, we introduce a new dataset consisting of 250 videos related to prostate cancer manually annotated for misinformation. Second, we explore the use of linguistic, acoustic, and user engagement features for the development of classification models to identify misinformation. Using a series of ablation experiments, we show that we can build automatic models with accuracies of up to 74%, corresponding to a 76.5% precision and 73.2% recall for misinformative instances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.