Chaetominine (1), an alkaloidal metabolite with a new framework, was characterized from the solid-substrate culture of Chaetomium sp. IFB-E015, an endophytic fungus on the apparently healthy Adenophora axilliflora leaves. Its structure was determined by a combination of its spectral data and single-crystal X-ray diffraction analysis, with its absolute configuration elucidated by Marfey's method. Chaetominine was more cytotoxic than 5-fluorouracil against the human leukemia K562 and colon cancer SW1116 cell lines. [structure: see text]
Pericyclic reactions are powerful transformations for the construction of carbon-carbon and carbon-heteroatom bonds in organic synthesis. Their role in biosynthesis is increasingly apparent, and mechanisms by which pericyclases can catalyse reactions are of major interest 1. [4+2] cycloadditions (Diels-Alder reactions) have been widely used in organic synthesis 2 for the formation of six-membered rings and are now well-established in biosynthesis 3-6. [6+4] and other 'higher-order' cycloadditions were predicted 7 in 1965, and are now increasingly common in the laboratory despite challenges arising from the generation of a highly strained ten-membered ring Reprints and permissions information is available at http://www.nature.com/reprints.
Oxidative rearrangements play key roles in introducing structural complexity and biological activities of natural products biosynthesized by type II polyketide synthases (PKSs). Chartreusin (1) is a potent antitumor polyketide that contains a unique rearranged pentacyclic aromatic bilactone aglycone derived from a type II PKS. Herein, we report an unprecedented dioxygenase, ChaP, that catalyzes the final α-pyrone ring formation in 1 biosynthesis using flavin-activated oxygen as an oxidant. The X-ray crystal structures of ChaP and two homologues, docking studies, and site-directed mutagenesis provided insights into the molecular basis of the oxidative rearrangement that involves two successive C-C bond cleavage steps followed by lactonization. ChaP is the first example of a dioxygenase that requires a flavin-activated oxygen as a substrate despite lacking flavin binding sites, and represents a new class in the vicinal oxygen chelate enzyme superfamily.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.