The reported thermal conductivity (kappa) of suspended graphene, 3000 to 5000 watts per meter per kelvin, exceeds that of diamond and graphite. Thus, graphene can be useful in solving heat dissipation problems such as those in nanoelectronics. However, contact with a substrate could affect the thermal transport properties of graphene. Here, we show experimentally that kappa of monolayer graphene exfoliated on a silicon dioxide support is still as high as about 600 watts per meter per kelvin near room temperature, exceeding those of metals such as copper. It is lower than that of suspended graphene because of phonons leaking across the graphene-support interface and strong interface-scattering of flexural modes, which make a large contribution to kappa in suspended graphene according to a theoretical calculation.
Since the first successful synthesis of graphene just over a decade ago, a variety of twodimensional (2D) materials (e.g., transition metal-dichalcogenides, hexagonal boron-nitride, etc.) have been discovered. Among the many unique and attractive properties of 2D materials, mechanical properties play important roles in manufacturing, integration and performance for their potential applications. Mechanics is indispensable in the study of mechanical properties, both experimentally and theoretically. The coupling between the mechanical and other physical properties (thermal, electronic, optical) is also of great interest in exploring novel applications, where mechanics has to be combined with condensed matter physics to establish a scalable theoretical framework. Moreover, mechanical interactions between 2D materials and various substrate materials are essential for integrated device applications of 2D materials, for which the mechanics of interfaces (adhesion and friction) has to be developed for the 2D materials. Here we review recent theoretical and experimental works related to mechanics and mechanical properties of 2D materials. While graphene is the most studied 2D material to date, we expect continual growth of interest in the mechanics of other 2D materials beyond graphene.
The elastic moduli of ultrathin poly(styrene) (PS) and poly(methylmethacrylate) (PMMA) films of thickness ranging from 200 nm to 5 nm were investigated using a buckling-based metrology. Below 40 nm, the apparent modulus of the PS and PMMA films decreases dramatically, with an order of magnitude decrease compared to bulk values for the thinnest films measured. We can account for the observed decrease in apparent modulus by applying a composite model based on the film having a surface layer with a reduced modulus and of finite thickness. The observed decrease in the apparent modulus highlights issues in mechanical stability and robustness of sub-40 nm polymer films and features.
A new formula for elastic bending modulus of monolayer graphene is derived analytically from an empirical potential for solid-state carbon-carbon bonds. Two physical origins are identified for the non-vanishing bending modulus of the atomically thin graphene sheet, one due to the bond angle effect and the other resulting from the bond order term associated with dihedral angles. The analytical prediction compares closely with ab initio energy calculations. Pure bending of graphene monolayers are simulated by a molecular mechanics approach, showing slight nonlinearity and anisotropy in the tangent bending modulus as the bending curvature increases. An intrinsic coupling between bending and in-plane strain is noted for graphene monolayers rolled into carbon nanotubes.
The nonlinear mechanical response of monolayer graphene on polyethylene terephthalate (PET) is characterised using in‐situ Raman spectroscopy and atomic force microscopy. While interfacial stress transfer leads to tension in graphene as the PET substrate is stretched, retraction of the substrate during unloading imposes compression in the graphene. Two interfacial failure mechanisms, shear sliding under tension and buckling under compression, are identified. Using a nonlinear shear‐lag model, the interfacial shear strength is found to range between 0.46 and 0.69 MPa. The critical strain for onset of interfacial sliding is ∼0.3%, while the maximum strain that can be transferred to graphene ranges from 1.2% to 1.6% depending on the interfacial shear strength and graphene size. Beyond a critical compressive strain of around −0.7%, buckling ridges are observed after unloading. The results from this work provide valuable insight and design guidelines for a broad spectrum of applications of graphene and other 2D nanomaterials, such as flexible and stretchable electronics, strain sensing, and nanocomposites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.