Timely administration of emergency therapeutics is critical for patients with sudden-onset illnesses. In article number 2208648, Haojian Lu, Jicheng Yu, Zhen Gu, and co-workers develop an unmanned aerial vehicle (UAV)-mediated first-aid system (uFAST), which enables the autonomous administration of emergency therapeutics via a UAV without the involvement of an additional or conscious person to achieve timely first aid.
In this paper, we describe the advances in the design, actuation, modeling, and control field of continuum robots. After decades of pioneering research, many innovative structural design and actuation methods have arisen. Untethered magnetic robots are a good example; its external actuation characteristic allows for miniaturization, and they have gotten a lot of interest from academics. Furthermore, continuum robots with proprioceptive abilities are also studied. In modeling, modeling approaches based on continuum mechanics and geometric shaping hypothesis have made significant progress after years of research. Geometric exact continuum mechanics yields apparent computing efficiency via discrete modeling when combined with numerical analytic methods such that many effective model-based control methods have been realized. In the control, closed-loop and hybrid control methods offer great accuracy and resilience of motion control when combined with sensor feedback information. On the other hand, the advancement of machine learning has made modeling and control of continuum robots easier. The data-driven modeling technique simplifies modeling and improves anti-interference and generalization abilities. This paper discusses the current development and challenges of continuum robots in the above fields and provides prospects for the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.