MXene-based heterostructures have received considerable interest owing to their unique properties. Herein, we examine various heterostructures of the prototypical MXene Ti3C2T2 (T=O, OH, F; terminal groups) and graphene using density functional theory. We find that the adhesion energy, charge transfer, and band structure of these heterostructures are sensitive not only to the surface functional group, but also to the stacking order. Due to its greatest difference in work function with graphene, Ti3C2(OH)2 has the strongest interaction with graphene, followed by Ti3C2O2 and then Ti3C2F2. Electron transfers from Ti3C2(OH)2 to graphene but from graphene to Ti3C2O2 and Ti3C2F2, which causes a shift in the Dirac point of the graphene bands in the heterostructures of monolayer graphene and monolayer MXene. In the heterostructures of bilayer graphene and monolayer MXene, the interface breaks the symmetry of the bilayer graphene; in the case of the AB-stacking bilayer, the electron transfer leads to an interfacial electric field that opens up a gap in the graphene bands at the K point. This internal polarization strengthens both the interfacial adhesions and the cohesion between the two graphene layers. The MXene-graphene-MXene and graphene-MXene-graphene sandwich structures behave as two mirror-symmetric MXene-graphene interfaces. Our first principles studies provide a comprehensive understanding for the interaction between a typical MXene and graphene.3
A sort of beta-lactamase inhibitor, 6-methylidene penem can inhibit both class A and class C serine beta-lactamase. Its inhibition mechanism involves yielding a seven-membered ring intermediate after acylation of the serine. Density functional theory (DFT) method was used on the molecular model to determine the mechanism of producing the seven-membered ring intermediate. Solvent effects were considered via polarizable continuum model (PCM). Moreover, a water-assisted process was considered in the hydrogen transfer process. The results show that the seven-membered ring intermediate can be obtained via two possible mechanisms, namely, concerted mechanism and stepwise mechanism. In stepwise mechanism, a new thiirane intermediate which has never been reported was found. The product of stepwise mechanism, e, has five tautomerics, and they can be tautomerized by hydrogen transfer.
Oseltamivir (OTV) is widely used in the treatment of both influenza virus A and B infections. Additionally, OTV is an effective antiviral drug in treating the 2009 A (HlNl) influenza virus. Chnical studies concluded that OTV is readily extensively converted to the active carboxylate metabolite after oral administration. In order to investigate the metabolism mechanism of OTV, we carried out density functional theory (DFT) quantum mechanical calculations. The molecule orbital (MO) theory and natural population analysis (NPA) were also employed to help understanding the reaction mechanism. All possible reaction pathways for OTV metabolism are considered, involving hydrolysis of ester and amide. Two mechanisms were considered in this work, viz. concerted mechanism and stepwise mechanism. Our results indicate the stepwise mechanism is more favorable in both hydrolysis reactions and the rate-determining stage is the formation of the tetrahedral intermediate. In addition, the hydrolysis reactions can be assisted by substrate NH2 group and solvent water molecules. The substrate-assisted mechanism for the formation of the carboxylate metabolite is the most favorable one.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.