Cdc42Hs is a small GTPase of the Rho-subfamily, which regulates signaling pathways that influence cell morphology and polarity, cell-cycle progression and transcription. An essential role for Cdc42Hs in cell growth regulation has been suggested by the finding that the Dbl oncoprotein is an upstream activator-a guanine nucleotide exchange factor (GEF)-for Cdc42Hs, and that activated mutants of the closely related GTPases Rac and Rho are transforming. As we were unable to obtain significant over-expression of GTPase-defective Cdc42Hs mutants, we have generated a mutant, Cdc42Hs(F28L), which can undergo spontaneous GTP-GDP exchange while maintaining full GTPase activity, and thus should exhibit functional activities normally imparted by Dbl. In cultured fibroblasts, Cdc42Hs(F28L) activated the c-Jun kinase (JNK1) and stimulated filopodia formation. Cells stably expressing Cdc42Hs(F28L) also exhibited several hallmarks of transformation-reduced contact inhibition, lower dependence on serum for growth, and anchorage-independent growth. Our findings indicate that Cdc42Hs plays a role in cell proliferation, and is a likely physiological mediator of Dbl-induced transformation.
The Ras-related GTP-binding protein Cdc42 is implicated in a variety of biological activities including the establishment of cell polarity in yeast, the regulation of cell morphology, motility and cell-cycle progression in mammalian cells and the induction of malignant transformation. We identified a Cdc42 mutant (Cdc42F28L) which binds GTP in the absence of a guanine nucleotide exchange factor, but still hydrolyses GTP with a turnover number identical to that for wild-type Cdc42. Expression of this mutant in NIH 3T3 fibroblasts causes cellular transformation, mimicking many of the characteristics of cells transformed by the Dbl oncoprotein, a known guanine nucleotide exchange factor for Cdc42. Here we searched for new Cdc42 targets in an effort to understand how Cdc42 mediates cellular transformation. We identified the gamma-subunit of the coatomer complex (gammaCOP) as a specific binding partner for activated Cdc42. The binding of Cdc42 to gammaCOP is essential for a transforming signal distinct from those elicited by Ras.
Regulation of the actin-myosin cytoskeleton plays a central role in cell migration and cancer progression. Here, we report the discovery of a cytoskeleton-associated kinase, pseudopodium-enriched atypical kinase 1 (PEAK1). PEAK1 is a 190-kDa nonreceptor tyrosine kinase that localizes to actin filaments and focal adhesions. PEAK1 undergoes Src-induced tyrosine phosphorylation, regulates the p130Cas-Crk-paxillin and Erk signaling pathways, and operates downstream of integrin and epidermal growth factor receptors (EGFR) to control cell spreading, migration, and proliferation. Perturbation of PEAK1 levels in cancer cells alters anchorage-independent growth and tumor progression in mice. Notably, primary and metastatic samples from colon cancer patients display amplified PEAK1 levels in 81% of the cases. Our findings indicate that PEAK1 is an important cytoskeletal regulatory kinase and possible target for anticancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.