It is thought to be an effective technique to handle the problem of educational data explosion and lack of information by identifying potential relationships between data and directing decision-makers through the extraction, transformation, analysis, and modeling of educational data. Based on this, this research constructs a data analysis model for education evaluation using the K-means clustering technique in DM. The weight of each index of students’ comprehensive quality is calculated using AHP, and the value of the weight is used to determine whether the index is the important feature of analysis system mining. Improved sampling technology is used to deal with the representation of large-scale data sets; a sample partition clustering technique is proposed as a general framework. The best accuracy of this method, according to experimental data, is 95.6 percent, which is 12.1 percent greater than Mi cluster algorithm and 6.8 percent higher than DRCluster algorithm. The K-means clustering analysis technology is used to analyze students’ comprehensive evaluation data in this paper, with the goal of determining the regularity of data implication, accurately diagnosing learning problems, and providing the foundation for developing effective student management strategies.
This paper proposes corresponding teaching methods and instructional modes based on predecessors’ research on mathematics instructional mode and the current state of mathematics teaching. In addition, this paper constructs a teaching evaluation model based on DL algorithm based on an in-depth study of DL-related theories in order to accurately and scientifically analyze the problems that exist in mathematics teaching. This paper constructs an instructional quality evaluation index system based on rationality and fairness, and uses the BPNN evaluation model to train and study a set of instructional quality data. Finally, the experimental results show that this system has a high level of stability, with a 96.37 percent stability rate and a 95.42 percent evaluation accuracy rate. The results of this paper’s evaluation of the mathematical instructional quality model are objective and reasonable. It can accurately assess instructional quality while also assessing problems in the teaching process based on the instructional quality scores and making reasonable recommendations for teaching improvement based on the weak links in the teaching process. It has the potential to provide a workable system for assessing instructional quality.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.