Solar eruptions are spectacular magnetic explosions in the Sun's corona and how they are initiated remains unclear. Prevailing theories often rely on special magnetic topologies which, however, may not generally exist in the pre-eruption source region of corona. Here using fully three-dimensional magnetohydrodynamic simulations with high accuracy, we show that solar eruption can be initiated in a single bipolar configuration with no additional special topology. Through photospheric shearing motion alone, an electric current sheet forms in the highly sheared core field of the magnetic arcade during its quasi-static evolution. Once magnetic reconnection sets in, the whole arcade is expelled impulsively, forming a fast-expanding twisted flux rope with a highly turbulent reconnecting region underneath. The simplicity and efficacy of this scenario argue strongly for its fundamental importance in the initiation of solar eruptions.
We revisit the ''failed'' filament eruption of 2002 May 27, first studied in detail by Ji et al. We investigate the temporal and spatial relationship between the filament dynamics and the production of hard X-ray emission using spatially resolved high-cadence data from TRACE and RHESSI. We confirm the presence of a hard X-ray source in the corona above the filament prior to the main activation phase and identify a second coronal hard X-ray source, not considered by earlier studies, that occurs under the apex of the filament during the erupting phase when the filament is clearly strongly kinked. We argue that this second source of coronal hard X-ray emission implies ongoing magnetic reconnection in a current sheet formed via a kink instability resulting from the interaction of the two adjacent legs underneath the writhing filament, in agreement with simulation results. The presence of this second energy release site has important implications for models of solar eruptions.
Magnetic flux ropes (MFRs) are one kind of fundamental structures in the solar/space physics and involved in various eruption phenomena. Twist, characterizing how the magnetic field lines wind around a main axis, is an intrinsic property of MFRs, closely related to the magnetic free energy and stableness. Although the effect of the twist on the behavior of MFRs had been widely studied in observations, theory, modeling, and numerical simulations, it is still unclear how much amount of twist is carried by MFRs in the solar atmosphere and in heliosphere and what role the twist played in the eruptions of MFRs. Contrasting to the solar MFRs, there are lots of in situ measurements of magnetic clouds (MCs), the large‐scale MFRs in interplanetary space, providing some important information of the twist of MFRs. Thus, starting from MCs, we investigate the twist of interplanetary MFRs with the aid of a velocity‐modified uniform‐twist force‐free flux rope model. It is found that most of MCs can be roughly fitted by the model and nearly half of them can be fitted fairly well though the derived twist is probably overestimated by a factor of 2.5. By applying the model to 115 MCs observed at 1 AU, we find that (1) the twist angles of interplanetary MFRs generally follow a trend of about 0.6lR radians, where lR is the aspect ratio of a MFR, with a cutoff at about 12π radians AU−1, (2) most of them are significantly larger than 2.5π radians but well bounded by 2lR radians, (3) strongly twisted magnetic field lines probably limit the expansion and size of MFRs, and (4) the magnetic field lines in the legs wind more tightly than those in the leading part of MFRs. These results not only advance our understanding of the properties and behavior of interplanetary MFRs but also shed light on the formation and eruption of MFRs in the solar atmosphere. A discussion about the twist and stableness of solar MFRs are therefore given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.