BackgroundFoxtail millet [Setaria italica (L.) P. Beauv.], a crop of historical importance in China, has been adopted as a model crop for studying C-4 photosynthesis, stress biology and biofuel traits. Construction of a high density genetic map and identification of stable quantitative trait loci (QTL) lay the foundation for marker-assisted selection for agronomic traits and yield improvement.ResultA total of 10598 SSR markers were developed according to the reference genome sequence of foxtail millet cultivar ‘Yugu1’. A total of 1013 SSR markers showing polymorphism between Yugu1 and Longgu7 were used to genotype 167 individuals from a Yugu1 × Longgu7 F2 population, and a high density genetic map was constructed. The genetic map contained 1035 loci and spanned 1318.8 cM with an average distance of 1.27 cM between adjacent markers. Based on agronomic and yield traits identified in 2 years, 29 QTL were identified for 11 traits with combined analysis and single environment analysis. These QTL explained from 7.0 to 14.3 % of phenotypic variation. Favorable QTL alleles for peduncle length originated from Longgu7 whereas favorable alleles for the other traits originated from Yugu1 except for qLMS6.1.ConclusionsNew SSR markers, a high density genetic map and QTL identified for agronomic and yield traits lay the ground work for functional gene mapping, map-based cloning and marker-assisted selection in foxtail millet.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-2628-z) contains supplementary material, which is available to authorized users.
Dynamic network biomarkers (DNB) can identify the critical state or tipping point of a disease, thereby predicting rather than diagnosing the disease. However, it is difficult to apply the DNB theory to clinical practice because evaluating DNB at the critical state required the data of multiple samples on each individual, which are generally not available, and thus limit the applicability of DNB. In this study, we developed a novel method, i.e., single-sample DNB (sDNB), to detect early-warning signals or critical states of diseases in individual patients with only a single sample for each patient, thus opening a new way to predict diseases in a personalized way. In contrast to the information of differential expressions used in traditional biomarkers to “diagnose disease”, sDNB is based on the information of differential associations, thereby having the ability to “predict disease” or “diagnose near-future disease”. Applying this method to datasets for influenza virus infection and cancer metastasis led to accurate identification of the critical states or correct prediction of the immediate diseases based on individual samples. We successfully identified the critical states or tipping points just before the appearance of disease symptoms for influenza virus infection and the onset of distant metastasis for individual patients with cancer, thereby demonstrating the effectiveness and efficiency of our method for quantifying critical states at the single-sample level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.