Montmorillonite modified with a quaternary ammonium salt C30B/starch nanocomposite (C30B/ST-NC), silver nanoparticles/starch nanocomposite (Ag-NPs/ST-NC) and both silver nanoparticles/C30B/starch nanocomposites (Ag-NPs/C30B/ST-NC) films were produced. The nanoclay (C30B) was dispersed in a starch solution using an ultrasonic probe. Different concentrations of Ag-NPs (0.3, 0.5, 0.8 and 1.0mM) were synthesized directly in starch and in clay/starch solutions via chemical reduction method. Dispersion of C30B silicate layers and Ag-NPs in ST films characterized by X-ray and scanning electron microscopy showed that the presence of Ag-NPs enhanced clay dispersion. Color and opacity measurements, barrier properties (water vapor and oxygen permeabilities), dynamic mechanical analysis and contact angle were evaluated and related with the incorporation of C30B and Ag-NPs. Films presented antimicrobial activity against Staphylococcus aureus, Escherichia coli and Candida albicans without significant differences between Ag-NPs concentrations. The migration of components from the nanostructured starch films, assessed by food contact tests, was minor and under the legal limits. These results indicated that the starch films incorporated with C30B and Ag-NPs have potential to be used as packaging nanostructured material.
a b s t r a c tThe influence of ohmic heating (OH) through the application of moderate electric fields on phytochemical compounds recovery from colored potato (Solanum tuberosum L. var. Vitelotte) was studied. A BoxeBehnken design was used to simultaneously assess the effects of operational parameters such as electric field strength, temperature and process time on the yields of anthocyanins and total phenolic recovery on pretreatment of potato samples. From the analysis of the model, electric field, temperature and time were shown to have independent and interactive effects on the values of extraction yields. Aqueous extraction of phytochemical compounds after pretreatments can be described by using a twostep model involving simultaneous washing and diffusion of the solutes from the samples. Results shows that electrical fields of low energy levels and thermal effects can be combined and optimized into a single step treatment on extraction of anthocyanins and phenolic compounds from vegetable tissues providing high recovery yields with a reduced treatment time, less energy consumption and with no utilization of organic solvents (green extraction).
Proteins are one of the food constituents most affected by heating, and some of the changes involve their unfolding, denaturation and gelation. Ohmic heating has often been claimed to improve the quality of foodstuffs due to its uniform heating and (putative) presence of a moderate electric field (MEF). However, this is still subject to discussion, so it is important to determine the effect of ohmic heating and of its MEF upon food constituents. Hence, the aim of this work was to evaluate the effects of MEF on denaturation, aggregation and viscoelastic properties of whey protein isolate (WPI), and compare them with those obtained via conventional heating under identical treatment conditions (up to 30 min at 85 o C). Results have shown that MEF interferes with whey protein unfolding and aggregation pathways at relatively high temperatures. MEF treatments have resulted in WPI solutions possessing more 8 and 10% of native Lactoglobulin and Lactalbumin, respectively, after 30 s of heating at 85 o C, when compared with a conventional heating method. Protein aggregates from MEF-treated WPI solutions presented a maximum increase in size of 78 nm, whereas conventional heating produced an increase of 86 nm. Unlike in conventional heating, aggregation of whey proteins during MEF was not sufficiently strong to form a true elastic gel network, since decreases in both storage and loss modulus were observed following MEF treatment. Our results suggest that MEF may provide a novel method for production of a whey protein matrix with distinctive gel-forming properties.2
This review provides an overview of recent research on electrotechnologies applied to the valorization of bioresources. Following a comprehensive summary of the current status of the application of well-known electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges (HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (allowing enhanced extraction yields), may also originate high heating rates - ohmic heating (OH) effect - allowing thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological origin broadening their application range. The substantial increase of MEF-based plants installed in industries worldwide suggests its straightforward application for waste recovery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.