BACKGROUND Polymyxin-induced nephrotoxicity is a major safety concern in clinical practice due to long-term adverse outcomes and high mortality. AIM To conducted a systematic review and meta-analysis of the prevalence and potential predictors of polymyxin-induced nephrotoxicity in adult intensive care unit (ICU) patients. METHODS PubMed, EMBASE, the Cochrane Library and Reference Citation Analysis database were searched for relevant studies from inception through May 30, 2022. The pooled prevalence of polymyxin-induced nephrotoxicity and pooled risk ratios of associated factors were analysed using a random-effects or fixed-effects model by Stata SE ver. 12.1. Additionally, subgroup analyses and meta-regression were conducted to assess heterogeneity. RESULTS A total of 89 studies involving 12234 critically ill adult patients were included in the meta-analysis. The overall pooled incidence of polymyxin-induced nephrotoxicity was 34.8%. The pooled prevalence of colistin-induced nephrotoxicity was not higher than that of polymyxin B (PMB)-induced nephrotoxicity. The subgroup analyses showed that nephrotoxicity was significantly associated with dosing interval, nephrotoxicity criteria, age, publication year, study quality and sample size, which were confirmed in the univariable meta-regression analysis. Nephrotoxicity was significantly increased when the total daily dose was divided into 2 doses but not 3 or 4 doses. Furthermore, older age, the presence of sepsis or septic shock, hypoalbuminemia, and concomitant vancomycin or vasopressor use were independent risk factors for polymyxin-induced nephrotoxicity, while an elevated baseline glomerular filtration rate was a protective factor against colistin-induced nephrotoxicity. CONCLUSION Our findings indicated that the incidence of polymyxin-induced nephrotoxicity among ICU patients was high. It emphasizes the importance of additional efforts to manage ICU patients receiving polymyxins to decrease the risk of adverse outcomes.
BackgroundDrug-induced acute kidney damage (DI-AKI) is a clinical phenomenon of rapid loss of kidney function over a brief period of time as a consequence of the using of medicines. The lack of a specialized treatment and the instability of traditional kidney injury markers to detect DI-AKI frequently result in the development of chronic kidney disease. Thus, it is crucial to continue screening for DI-AKI hub genes and specific biomarkers.MethodsDifferentially expressed genes (DEGs) of group iohexol, cisplatin, and vancomycin’s were analyzed using Limma package, and the intersection was calculated. DEGs were then put into String database to create a network of protein-protein interactions (PPI). Ten algorithms are used in the Cytohubba plugin to find the common hub genes. Three DI-AKI models’ hub gene expression was verified in vivo and in vitro using PCR and western blot. To investigate the hub gene’s potential as a biomarker, protein levels of mouse serum and urine were measured by ELISA kits. The UUO, IRI and aristolochic acid I-induced nephrotoxicity (AAN) datasets in the GEO database were utilized for external data verification by WGCNA and Limma package. Finally, the Elisa kit was used to identify DI-AKI patient samples.Results95 up-regulated common DEGs and 32 down-regulated common DEGs were obtained using Limma package. A PPI network with 84 nodes and 24 edges was built with confidence >0.4. Four hub genes were obtained by Algorithms of Cytohubba plugin, including TLR4, AOC3, IRF4 and TNFAIP6. Then, we discovered that the protein and mRNA levels of four hub genes were significantly changed in the DI-AKI model in vivo and in vitro. External data validation revealed that only the AAN model, which also belonged to DI-AKI model, had significant difference in these hub genes, whereas IRI and UUO did not. Finally, we found that plasma TLR4 levels were higher in patients with DI-AKI, especially in vancomycin-induced AKI.ConclusionThe immune system and inflammation are key factors in DI-AKI. We discovered the immunological and inflammatory-related genes TLR4, AOC3, IRF4, and TNFAIP6, which may be promising specific biomarkers and essential hub genes for the prevention and identification of DI-AKI.
Lysine‐specific demethylase 1 (LSD1) inhibitors are being developed for cancer therapy, but their bioeffects on vasculatures are not clear. In this study, we compared the influences of ORY‐1001 (an LSD1 inhibitor being advanced into clinical trials) and 199 (a novel LSD1 inhibitor recently developed by us) to human umbilical vein endothelial cells (HUVECs) in vitro and further verified the bioeffects of ORY‐1001 to zebrafish (Danio rerio) larvae in vivo. The results showed that up to 10 μM ORY‐1001 or 199 did not significantly affect the cellular viability of HUVECs but substantially reduced the release of inflammatory interleukin‐8 (IL‐8) and IL‐6. The signaling molecule in vasculatures, NO, was also increased in HUVECs. As the mechanism, the protein levels of endothelial NO synthase (eNOS) or p‐eNOS, and their regulators Kruppel‐like factor 2 (KLF2) or KLF4, were also increased after drug treatment. In vivo, 24 h treatment with up to 100 nM ORY‐1001 reduced blood speed without changing morphologies or locomotor activities in zebrafish larvae. ORY‐1001 treatment reduced the expression of il8 but promoted the expression of klf2a and nos in the zebrafish model. These data show that LSD1 inhibitors were not toxic but capable to inhibit inflammatory responses and affect the function of blood vessels through the up‐regulation of the NOS‐KLF pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.