The pumped storage power station has the characteristics of frequency-phase modulation, energy saving, and economy, and has great development prospects and application value. In order to cope with the large-scale integration and intermittency of renewable energy and improve the ability of pumped storage units to participate in power grid frequency modulation, this paper proposed a load frequency control (LFC) strategy for pumped storage units based on linear active disturbance rejection technology. Firstly, based on the operating characteristics of the pumped storage power station, the LFC model of the two-area reheat steam turbine under nonlinear conditions such as governor dead zone and generation rate constrains was established. Secondly, a second-order linear active disturbance rejection control (LADRC) was designed. The feasibility and control performance of the proposed LFC system were quantitatively analyzed through simulation. The results show that the LADRC has better control effect and stronger robustness than fractional-order proportion integration differentiation (FOPID) and traditional proportion integration differentiation (PID) controller. Finally, the pumped storage power station was added, and it was found that it has better correction performance under both generating and pumping operations, which greatly improved the dynamic response of secondary frequency modulation.
To enable power generation companies to make full use of effective wind energy resources and grid companies to correctly schedule wind power, this paper proposes a model of offshore wind power forecast considering the variation of wind speed in second-level time scale. First, data preprocessing is utilized to process the abnormal data and complete the normalization of offshore wind speed and wind power. Then, a wind speed prediction model is established in the second time scale through the differential smoothing power sequence. Finally, a rolling PSO-LSTM memory network is authorized to realize the prediction of second-level time scale wind speed and power. An offshore wind power case is utilized to illustrate and characterize the performance of the wind power forecast model.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.