While soliton microcombs offer the potential for integration of powerful frequency metrology and precision spectroscopy systems, their operation requires complex startup and feedback protocols that necessitate difficult-to-integrate optical and electrical components. Moreover, CMOS-rate microcombs, required in nearly all comb systems, have resisted integration because of their power requirements. Here, a regime for turnkey operation of soliton microcombs co-integrated with a pump laser is demonstrated and theoretically explained. Significantly, a new operating point is shown to appear from which solitons are generated through binary turn-on and turn-off of the pump laser, thereby eliminating all photonic/electronic control circuitry. These features are combined with high-Q Si3N4 resonators to fully integrate into a butterfly package microcombs with CMOS frequencies as low as 15 GHz, offering compelling advantages for high-volume production.
A comprehensive mapping of the spin polarization of the electronic bands in ferroelectric α-GeTe(111) films has been performed using a time-of-flight momentum microscope equipped with an imaging spin filter that enables a simultaneous measurement of more than 10.000 data points (voxels). A Rashba type splitting of both surface and bulk bands with opposite spin helicity of the inner and outer Rashba bands is found revealing a complex spin texture at the Fermi energy. The switchable inner electric field of GeTe implies new functionalities for spintronic devices. The strong coupling of electron momentum and spin in low-dimensional structures allows an electrically controlled spin manipulation in spintronic devices [1-4], e.g. via the Rashba effect [5]. The Rashba effect has first been experimentally demonstrated in semiconductor heterostructures, where an electrical field perpendicular to the layered structure, i.e. perpendicular to the electron momentum, determines the electron spin orientation relative to its momentum [6-8]. An asymmetric interface structure causes the necessary inversion symmetry breaking and accounts for the special spin-splitting of electron states, the Rashba effect [5], the size of which can be tuned by the strength of the electrical field. For most semiconducting materials the Rashba effect causes only a quite small splitting of the order of 10 −2 ˚ A −1 and thus requires experiments at very low temperatures [9-11] and also implies large lateral dimensions for potential spintronic applications. A considerably larger splitting has been predicted theoretically [12] and was recently found experimentally for the surface states of GeTe(111) [13, 14]. GeTe is a ferroelectric semiconductor with a Curie temperature of 700 K. Thus, besides the interface induced Rashba splitting, the ferroelectric properties also imply a broken inversion symmetry within the bulk and thus would allow for the electrical tuning of the bulk Rashba splitting via switching the ferroelectric polarization [12, 15, 16]. This effect is of great interest for non-volatile spin orbitronics [10]. For GeTe a bulk Rashba splitting of 0.19Å19Å −1 has been predicted theoretically [12]. Experimentally, bulk-Rashba bands are rare and have only been found in the layered polar semiconductors BiTeCl and BiTeI [17-20] that, however, are not switchable. A characterization of the ferroelectric properties and a measurement of the spin polarization of the surface states of GeTe(111) at selected k-points has been performed previously by force microscopy [21, 22] and spin-resolved angular resolved photoemission spectroscopy, respectively [13]. A recent experimental and theoretical study revealed that at the Fermi level the hybridization of surface and bulk states causes surface-bulk resonant states resulting in unconventional spin topologies with chiral symmetry [14]. Here, we demonstrate the spin structure of surface and bulk bands of the GeTe(111) surface using the novel pho-toemission technique of spin-resolved time-of-flight momentum microsco...
Low-loss photonic integrated circuits and microresonators have enabled a wide range of applications, such as narrow-linewidth lasers and chip-scale frequency combs. To translate these into a widespread technology, attaining ultralow optical losses with established foundry manufacturing is critical. Recent advances in integrated Si3N4 photonics have shown that ultralow-loss, dispersion-engineered microresonators with quality factors Q > 10 × 106 can be attained at die-level throughput. Yet, current fabrication techniques do not have sufficiently high yield and performance for existing and emerging applications, such as integrated travelling-wave parametric amplifiers that require meter-long photonic circuits. Here we demonstrate a fabrication technology that meets all requirements on wafer-level yield, performance and length scale. Photonic microresonators with a mean Q factor exceeding 30 × 106, corresponding to 1.0 dB m−1 optical loss, are obtained over full 4-inch wafers, as determined from a statistical analysis of tens of thousands of optical resonances, and confirmed via cavity ringdown with 19 ns photon storage time. The process operates over large areas with high yield, enabling 1-meter-long spiral waveguides with 2.4 dB m−1 loss in dies of only 5 × 5 mm2 size. Using a response measurement self-calibrated via the Kerr nonlinearity, we reveal that the intrinsic absorption-limited Q factor of our Si3N4 microresonators can exceed 2 × 108. This absorption loss is sufficiently low such that the Kerr nonlinearity dominates the microresonator’s response even in the audio frequency band. Transferring this Si3N4 technology to commercial foundries can significantly improve the performance and capabilities of integrated photonics.
Silicon photonics enables wafer-scale integration of optical functionalities on chip. Silicon-based laser frequency combs can provide integrated sources of mutually coherent laser lines for terabit-per-second transceivers, parallel coherent light detection and ranging, or photonics-assisted signal processing. We report heterogeneously integrated laser soliton microcombs combining both indium phospide/silicon (InP/Si) semiconductor lasers and ultralow-loss silicon nitride (Si3N4) microresonators on a monolithic silicon substrate. Thousands of devices can be produced from a single wafer by using complementary metal-oxide-semiconductor–compatible techniques. With on-chip electrical control of the laser-microresonator relative optical phase, these devices can output single-soliton microcombs with a 100-gigahertz repetition rate. Furthermore, we observe laser frequency noise reduction due to self-injection locking of the InP/Si laser to the Si3N4 microresonator. Our approach provides a route for large-volume, low-cost manufacturing of narrow-linewidth, chip-based frequency combs for next-generation high-capacity transceivers, data centers, space and mobile platforms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.