The demand for proteins is rising and alternatives to meat proteins are necessary since animal husbandry is expensive and intensive to the environment. Plant proteins appear as an alternative; however, their techno-functional properties need improvement. High-pressure processing (HPP) is a non-thermal technology that has several applications including the modification of proteins. The application of pressure allows modifying proteins' structure hence allowing to change several of their properties, such as hydration, hydrophobicity, and hydrophilicity. These properties may influence the solubility of proteins and their ability to stabilize emulsions or foams, create aggregates or gels, and their general role in stability and texture of food commodities. Commonly HPP decreases the proteins' solubility yet increasing their surface hydrophobicity exposing sulfhydryl groups, which promotes aggregation or gelation or enhance their ability to stabilize emulsions/foams. However, these effects are not verifiable for all the proteins and are immensely dependent on the type and concentration of the protein, environmental conditions (pH, ionic strength, and co-solutes), and HPP conditions. This review collects and critically discusses the available information on how HPP affects the structure of plant proteins and how their techno-functional properties can be tailored using this approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.