Systemic inflammatory response has been implicated as a contributor to the onset of febrile seizures (FS). The four novel indices of the inflammatory response such as, neutrophil-to-lymphocyte ratio (NLR), mean platelet volume (MPV), platelet count (PLT) ratio and red blood cell distribution width (RDW) have been investigated in FS susceptibility and FS types (simple febrile seizure and complex febrile seizure). However, the potential role of these inflammatory markers and MPV/PLT ratio (MPR) in Chinese children with FS has yet to be fully determined. This study investigated the relevance of NLR, MPV, PLT, MPR and RDW in febrile children with and without seizures. 249 children with FS and 249 age matched controls were included in this study. NLR and MPR were calculated from complete blood cell counts prior to therapy. Differences in age, gender and these inflammatory markers between the FS group and the control group were evaluated using the chi-square test, t-test or logistic regression analysis. Receiver Operating Characteristic (ROC) curve was used to determine the optimal cut-off value of NLR and MPR for FS risk. Interactions between NLR and MPR on the additive scale were calculated by using the relative excess risk due to interaction (RERI), the proportion attributable to interaction (AP), and the synergy index (S). It has been shown that the elevated NLR and MPR levels were associated with increased risk of FS. The optimal cut-off values of NLR and MPR for FS risk were 1.13 and 0.0335 with an area under the curve (AUC) of 0.768 and 0.689, respectively. Additionally, a significant synergistic interaction between NLR and MPR was found on an additive scale. The mean levels of MPV were lower and NLR levels were higher in complex febrile seizure (CFS) than simple febrile seizure (SFS), and the differences were statistically significant. ROC analysis showed that the optimal cut-off value for NLR was 2.549 with 65.9% sensitivity and 57.5% specificity. However, no statistically significant differences were found regarding average values of MPR and RDW between CFS and SFS. In conclusion, elevated NLR and MPR add evidence to the implication of white cells subsets in FS risk, and our results confirmed that NLR is an independent, albeit limited, predictor in differentiating between CFS and SFS. Moreover, NLR and MPR may have a synergistic effect that can influence the occurrence of FS.
Fragile X syndrome (FXS), a common form of inherited mental retardation, is caused by a loss of expression of the fragile X mental retardation protein (FMRP). FMRP is involved in brain functions by interacting with mRNAs and microRNAs (miRNAs) that selectively control gene expression at translational level. However, little is known about the role of FMRP in regulating miRNA expression. Here, we found a development-dependant dynamic expression of Fmr1 gene (encoding FMRP) in mouse hippocampus with a small peak at postnatal day 7 (P7). MiRNA microarray analysis showed that the levels of 38 miRNAs showed a significant increase with about 15 ~ 250-folds and the levels of 26 miRNAs showed a significant decrease with only about 2 ~ 4-folds in the hippocampus of P7 Fmr1 knockout (KO) mice. The qRT-PCR assay showed that nine of the most increased miRNAs (>100-folds in microarrays) increased about 40 ~ 70-folds and their pre-miRNAs increased about 5 ~ 10-folds, but no significant difference in their pri-miRNA levels was observed, suggesting that the alterations of partial miRNAs are an indirect consequence of FMRP lacking. We further demonstrated that a set of protein-coding mRNAs, potentially targeted by the nine miRNAs, were down-regulated in the hippocampus of Fmr1 KO mice. Finally, luciferase assays demonstrated that miR-34b, miR-340, and miR-148a could down-regulate the reporter gene expression by interacting with the Met 3' UTR. Taken together, these findings suggest that the miRNA expression alterations resulted from the absence of FMRP might contribute to molecular pathology of FXS.
Mutations in the SCN1A gene-encoding voltage-gated sodium channel α-I subunit (Nav1.1) cause various spectrum of epilepsies including Dravet syndrome (DS), a severe and intractable form. A large number of SCN1A mutations identified from the DS patients lead to the loss of function or truncation of Nav1.1 that result in a haploinsufficiency effects, indicating that the exact expression level of SCN1A should be essential to maintain normal brain function. In this study, we have identified five variants c.*1025T>C, c.*1031A>T, c.*1739C>T, c.*1794C>T and c.*1961C>T in the SCN1A 3' UTR in the patients with DS. The c.*1025T>C, c.*1031A>T and c.*1794C>T are conserved among different species. Of all the five variants, only c.*1794C>T is a novel variant and alters the predicted secondary structure of the 3' UTR. We also show that glyceraldehyde-3-phosphate dehydrogenase (GAPDH) only binds to the 3' UTR sequence containing the mutation allele 1794U but not the wild-type allele 1794C, indicating that the mutation allele forms a new GAPDH-binding site. Functional analyses show that the variant negatively regulates the reporter gene expression by affecting the mRNA stability that is mediated by GAPDH's binding, and this phenomenon could be reversed by shRNA-induced GAPDH knockdown. These findings suggest that GAPDH and the 3'-UTR variant are involved in regulating SCN1A expression at post-transcriptional level, which may provide an important clue for further investigating on the relationship between 3'-UTR variants and SCN1A-related diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.