In order to further explore the feasibility of the application of the residue of Chinese herbal medicine in FDM 3D technology and enrich the kinds of printing materials, Astragalus residue powder(ARP)/poly(lactic acid) (PLA) biocomposite was FDM 3D-printed, meanwhile, two traditional biocomposites, i.e., wood flour (WF)/PLA and rice straw powder (RSP)/PLA, were prepared by the same method, and the properties of the biocomposites were comparatively investigated. The results showed that, the tensile and flexural strengths of ARP/PLA were 28.33 MPa and 97.60 MPa, respectively, which were 2.85% and 10.89% smaller than those of WF/PLA, while 15.73% and 7.04% greater than those of RSP/PLA. WF/PLA showed typical brittle fracture characteristics, ARP/PLA and RSP/PLA both showed ductile fracture, but not obviously. Among the three kinds of biocomposites, ARP/PLA was the most thermally stable, followed by WF/PLA and RSP/PLA in turn. The incorporation of natural plant powder had no significant effect on the glassy transition, melting, and cold-crystallization behaviors of PLA, but the crystallinity of PLA could be increased from 0.3% to 2.0% and 1.9%, respectively, by adding ARP and WF. At 20 °C, the storage modulus of ARP/PLA, WF/PLA and RSP/PLA was 2759.4 MPa, 3361.3 MPa, and 2691.5 MPa, respectively, indicating that WF/PLA has the greatest stiffness, and the stiffness of RSP/PLA was the least. In addition to these, all the biocomposites were hydrophilic, the contact angle of the distilled water on the surface of ARP/PLA, WF/PLA or RSP/PLA was correspondingly 73.5°, 77.6° and 71.2°. Overall, it can be concluded that ARP/PLA has moderate strengths, stiffness and wettability, meanwhile, it is the most thermal stable among the three biocomposites, and can be processed at a temperature close to that of PLA. ARP/PLA is suitable as a new kind of feedstock material for FDM 3D printing.
Astragalus is widely cultivated in China, and the residue of Astragalus particles (ARP) can be used as reinforcements in fused filament-fabricated (FFF) natural fiber/Poly(lactic acid)(PLA) biocomposites. To clarify the degradation behavior of such biocomposites, 3D-printed 11 wt% ARP/PLA samples were buried in soil, and the effects of soil burial duration on the physical appearance, weight, flexural properties, morphology, thermal stability, melting, and crystallization properties were investigated. At the same time, 3D-printed PLA was chosen as a reference. The results showed that, with prolonged soil burial, the transparency of PLA decreased (but not obviously), while the surface photographs of ARP/PLA became gray with some black spots and crevices; especially after 60 days, the color of the samples became extremely heterogeneous. After soil burial, the weight, flexural strength, and flexural modulus of the printed samples all reduced, and greater losses happened to ARP/PLA pieces than pure PLA. With an increase in soil burial time, the glass transition, cold crystallization, and melting temperatures, as well as the thermal stability of PLA and ARP/PLA samples, all increased gradually. Additionally, soil burial had a greater effect on the thermal properties of ARP/PLA. The results showed that the degradation behavior of ARP/PLA was more significantly affected by soil burial than the behavior of PLA. Additionally, ARP/PLA more easily degraded in soil than PLA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.