This paper presents a novel Machine Learning (ML) approach to support the creation of woven fabrics. Using data from a textile company, two CRoss-Industry Standard Process for Data Mining (CRISP-DM) iterations were executed, aiming to compare three input feature representation strategies related with fabric design and finishing processes. During the modeling stage of CRISP-DM, an Automated ML (AutoML) procedure was used to select the best regression model among six distinct state-of-the-art ML algorithms. A total of nine textile physical properties were modeled (e.g., abrasion, elasticity, pilling). Overall, the simpler yarn representation strategy obtained better predictive results. Moreover, for eight fabric properties (e.g., elasticity, pilling) the addition of finishing features improved the quality of the predictions. The best ML models obtained low predictive errors (from 2% to 7%) and are potentially valuable for the textile company, since they can be used to reduce the number of production attempts (saving time and costs).
Textile and clothing is an important world industry that is currently being transformed by the adoption of the Industry 4.0 concept. In this paper, we use Data Mining (DM) technology and the CRoss-Industry Standard Process for DM (CRISP-DM) methodology to model the textile testing process, which assures that products are safe and comply with regulations and client needs. Real-world data were collected from a Portuguese textile company, which has the goal to reduce the number of attempts they take in order to produce a woven fabric. Thus, predicting the outcome of a given test is beneficial to the company because it can reduce the number of physical samples that are needed to be produced when designing new fabrics. In particular, we target two important textile regression tasks: the tear strength in warp and weft directions. To better focus on feature engineering and data transformations, we adopt an Automated Machine Learning (AutoML) during the modeling stage of the CRISP-DM. Several iterations of the CRISP-DM methodology were employed, using different data preprocessing procedures (e.g., removal of outliers). The best predictive models were achieved after 2 (for warp) and 3 (for weft) CRISP-DM iterations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.