To control the release rate and mask the bitter taste, cetirizine dihydrochloride (CedH) was entrapped within chitosan nanoparticles (CS-NPs) using an ionotropic gelation process, followed by microencapsulation to produce CS matrix microparticles using a spray-drying method. The aqueous colloidal CS-NPs dispersions with a drug encapsulation efficiency (EE) of <15%, were then spray dried to produce a powdered nanoparticles-in-microparticles system with an EE of >70%. The resultant spherical CS microparticles had a smooth surface, were free of organic solvent residue and showed a diameter range of 0.5~5 μm. The in vitro drug release properties of CedH encapsulated microparticles showed an initial burst effect during the first 2 h. Drug release from the matrix CS microparticles could be retarded by the crosslinking agent pentasodium tripolyphosphate or the wall material. The technique of 'ionotropic gelation' combined with 'spray-drying' could be applicable for preparation of CS nanoparticlesin-microparticles drug delivery systems. CS-NPs based microparticles might provide a potential micro-carrier for oral administration of the freely water-soluble drug--CedH.
Scopolamine hydrobromide (SH)-loaded microparticles were prepared from a colloidal fluid containing ionotropic-gelated chitosan nanoparticles using a spray-drying method. The spray-dried microparticles were then formulated into orally disintegrating tablets (ODTs) using a wet granulation tablet formation process. A drug entrapment efficiency of about 90% (w/w) and loading capacity of 20% (w/w) were achieved for the microparticles, which ranged from 2 μm to 8 μm in diameter. Results of disintegration tests showed that the formulated ODTs could be completely dissolved within 45 seconds. Drug dissolution profiles suggested that SH is released more slowly from tablets made using the microencapsulation process compared with tablets containing SH that is free or in the form of nanoparticles. The time it took for 90% of the drug to be released increased significantly from 3 minutes for conventional ODTs to 90 minutes for ODTs with crosslinked microparticles. Compared with ODTs made with noncrosslinked microparticles, it was thus possible to achieve an even lower drug release rate using tablets with appropriate chitosan crosslinking. Results obtained indicate that the development of new ODTs designed with crosslinked microparticles might be a rational way to overcome the unwanted taste of conventional ODTs and the side effects related to SH’s intrinsic characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.