Most photoredox catalysts in current use are precious metal complexes or synthetically elaborate organic dyes, the cost of which can impede their application for large-scale industrial processes. We found that a combination of triphenylphosphine and sodium iodide under 456-nanometer irradiation by blue light–emitting diodes can catalyze the alkylation of silyl enol ethers by decarboxylative coupling with redox-active esters in the absence of transition metals. Deaminative alkylation using Katritzky’s N-alkylpyridinium salts and trifluoromethylation using Togni’s reagent are also demonstrated. Moreover, the phosphine/iodide-based photoredox system catalyzes Minisci-type alkylation of N-heterocycles and can operate in tandem with chiral phosphoric acids to achieve high enantioselectivity in this reaction.
Catalytic C-H bond activation, which was an elusive subject of chemical research until the 1990s, has now become a standard synthetic method for the formation of new C-C and C-heteroatom bonds. The synthetic potential of C-H activation was first described for ruthenium catalysis and is now widely exploited by the use of various precious metals. Driven by the increasing interest in chemical utilization of ubiquitous metals that are abundant and nontoxic, iron catalysis has become a rapidly growing area of research, and iron-catalyzed C-H activation has been most actively explored in recent years. In this review, we summarize the development of stoichiometric C-H activation, which has a long history, and catalytic C-H functionalization, which emerged about 10 years ago. We focus in this review on reactions that take place via reactive organoiron intermediates, and we excluded those that use iron as a Lewis acid or radical initiator. The contents of this review are categorized by the type of C-H bond cleaved and the type of bond formed thereafter, and it covers the reactions of simple substrates and substrates possessing a directing group that anchors the catalyst to the substrate, providing an overview of iron-mediated and iron-catalyzed C-H activation reported in the literature by October 2016.
A 2,2-disubstituted propionamide bearing an 8-aminoquinolinyl group as the amide moiety can be arylated at the β-methyl position with an organozinc reagent in the presence of an organic oxidant, a catalytic amount of an iron salt, and a biphosphine ligand at 50 °C. Various features of selectivity and reactivity suggest the formation of an organometallic intermediate via rate-determining C-H bond cleavage rather than a free-radical-type reaction pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.