VIT is associated with a progressive expansion of circulating regulatory T cells, supporting a role for these cells in tolerance induction.
Viremia is significantly lower in HIV-2 than in HIV-1 infection, irrespective of disease stage. Nevertheless, the comparable proviral DNA burdens observed for these two infections indicate similar numbers of infected cells. Here we investigated this apparent paradox by assessing cell-associated viral replication. We found that untreated HIV-1-positive (HIV-1 ؉ ) and HIV-2 ؉ individuals, matched for CD4 T cell depletion, exhibited similar gag mRNA levels, indicating that significant viral transcription is occurring in untreated HIV-2 ؉ patients, despite the reduced viremia (undetectable to 2.6 ؋ 10 4 RNA copies/ml). However, tat mRNA transcripts were observed at significantly lower levels in HIV-2 ؉ patients, suggesting that the rate of de novo infection is decreased in these patients. Our data also reveal a direct relationship of gag and tat transcripts with CD4 and CD8 T cell activation, respectively. Antiretroviral therapy (ART)-treated HIV-2 ؉ patients showed persistent viral replication, irrespective of plasma viremia, possibly contributing to the emergence of drug resistance mutations, persistent hyperimmune activation, and poor CD4 T cell recovery that we observed with these individuals. In conclusion, we provide here evidence of significant ongoing viral replication in HIV-2 ؉ patients, further emphasizing the dichotomy between amount of plasma virus and cell-associated viral burden and stressing the need for antiretroviral trials and the definition of therapeutic guidelines for HIV-2 infection.
Diabetic foot ulcers (DFUs) are major complications of Diabetes mellitus being responsible for significant morbidity and mortality. DFUs frequently become chronically infected by a complex community of bacteria, including multidrug-resistant and biofilm-producing strains of Staphylococcus aureus and Pseudomonas aeruginosa. Diabetic foot infections (DFI) are often recalcitrant to conventional antibiotics and alternative treatment strategies are urgently needed. Antimicrobial Peptides (AMPs), such as pexiganan and nisin, have been increasingly investigated and reported as effective antimicrobial agents. Here, we evaluated the antibacterial potential of pexiganan and nisin used in combination (dual-AMP) to control the growth of planktonic and biofilm co-cultures of S. aureus and P. aeruginosa clinical strains, co-isolated from a DFU. A DFU collagen three-dimensional (3D) model was used to evaluate the distribution and efficacy of AMPs locally delivered into the model. The concentration of pexiganan required to inhibit and eradicate both planktonic and biofilm-based bacterial cells was substantially reduced when used in combination with nisin. Moreover, incorporation of both AMPs in a guar gum delivery system (dual-AMP biogel) did not affect the dual-AMP antimicrobial activity. Importantly, the application of the dual-AMP biogel resulted in the eradication of the S. aureus strain from the model. In conclusion, data suggest that the local application of the dual-AMPs biogel constitutes a potential complementary therapy for the treatment of infected DFU.
Haploidentical hematopoietic stem cell transplantation (HSCT) constitutes an important alternative for patients lacking a human leukocyte antigen (HLA)-matched donor. Although the use of haploidentical donors is increasingly common, the long-term impact of generating a donor-derived immune system in the context of an HLA-mismatched thymic environment remains poorly characterized. We performed an in-depth assessment of immune reconstitution in a group of haploidentical HSCT recipients 4 to 6 years posttransplantation, in parallel with the respective parental donors and age-matched healthy control subjects. Our data show that the proportion of naive and memory subsets in the recipients, both within CD8(+) and CD4(+) T cells, more closely resembled that observed in age-matched control subjects than in the donors. HSCT recipients displayed relatively high signal-joint T cell-receptor excision circle levels and a high frequency of the recent thymic emigrant-enriched CD31(+) subset within naive CD4(+) and naive regulatory T cells. Moreover, CD8(+), CD4(+), and regulatory T cells from HSCT recipients displayed a diverse T cell repertoire. These results support a key role for thymic output in T cell reconstitution. Nevertheless, HSCT recipients had significantly shorter telomeres within a naive-enriched CD4(+) T cell population than age-matched control subjects, despite the similar telomere length observed within the most differentiated CD8(+) and CD4(+) T cell subsets. Overall, our data suggest that long-term immune reconstitution was successfully achieved after haploidentical HSCT, a process that appears to have largely relied on de novo T cell production.
Monocytes and myeloid dendritic cells (mDCs) are important orchestrators of innate and human immunodeficiency virus (HIV)-specific immune responses and of the generalized inflammation that characterizes AIDS progression. To our knowledge, we are the first to investigate monocyte and mDC imbalances in HIV type 2 (HIV-2)-positive patients, who typically feature reduced viremia and slow disease progression despite the recognized ability of HIV-2 to establish viral reservoirs and overcome host restriction factors in myeloid cells. We found a heightened state of monocyte and mDC activation throughout HIV-2 infection (characterized by CD14(bright)CD16(+) expansion, as well as increased levels of soluble CD14, HLA-DR, and CD86), together with progressive mDC depletion. Importantly, HIV-2-positive patients also featured overexpression of the inhibitory molecule PD-L1 on monocytes and mDCs, which may act by limiting the production of proinflammatory molecules. These data, from patients with a naturally occurring form of attenuated HIV disease, challenge current paradigms regarding the role of monocytes in HIV/AIDS and open new perspectives regarding potential strategies to modulate inflammatory states.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.