The fabrication of commercial cellulose nanofibrils (CNFs) into arrays with long-range ordering is of great significance for their extended applications, which, however, is severely hindered by their high disorder, aggregation, and hornified features. Herein, sub-nanoscale anionic metal oxide clusters (phosphotungstic acid, H 3 PW 12 O 40 , PTA) are applied to complex with commercial CNFs (dried powder DCNF and aqueous suspension WCNF) in aqueous media, and a long-range ordered layer structure can be facilely fabricated via typical unidirectional freezing. The surface complexation of the commercial CNFs and PTA can be confirmed through the small-angle scattering studies of the complex hydrogels. The hydrogels present similar correlation lengths in small-angle X-ray and neutron scattering measurements, suggesting the homogeneous distribution of PTA along the commercial CNFs. This gives rise to the negatively charged surface feature and further leads to strong repulsion among the commercial CNFs. Due to the disparity in sizes, the influence of PTA on the density of hydrogel networks is suppressed, and the network density is mainly dependent on the mass content of CNFs. The studies provide guidance to fabricate hydrogels with catalytic and photosensitive properties and also to design and stabilize long-range ordered structured aerogels during the removal of the nonfreezing bound water absorbed by the commercial CNFs after unidirectional freezing. This facile strategy shows great potential to broaden the application of commercial CNFs in thermal insulators, super-adsorbent materials, and supercapacitors in electrical devices.
Cellulose nanocrystal (CNC) materials grant abundant possibilities for insulation; however, it’s extensive application is hindered by the intrinsic tradeoff between its thermal insulating performance and mechanical properties. Here, CNC aerogels...
Polyoxometalate (POM) presents great potential in oxidative desulfurization (ODS) reaction. However, the high dissolubility of POM in common solvents makes it difficult to recycle. Besides, the small specific surface area of POM also limits the interaction between them and the substrate. Depositing polyoxometalates onto three-dimensional (3D) network structured materials could largely expand the application of POM. Here, the surfaces of cellulose nanofibrils (CNFs) were modified with very few (3-Aminopropyl) trimethoxysilane (APTS) to endow positive charges on the surfaces of CNFs, and then phosphotungstic acid (PTA) was loaded to obtain the aerogel A-CNF/PTA as the ODS catalyst. FT-IR indicated the successful deposition of PTA onto aminosilane modified CNF surfaces. UV-VIS further suggested the stability of PTA in the aerogels. BET and SEM results suggested the increased specific surface area and the relatively uniform 3D network structure of the prepared aerogels. TGA analysis indicated that the thermal stability of the aerogel A-CNF/PTA50% was a little higher than that of the pure CNF aerogel. Most importantly, the aerogel A-CNF/PTA50% showed good catalytic performance for ODS. Catalysis results showed that the substrate conversion rate of the aerogel A-CNF/PTA50% reached 100% within 120 min at room temperature. Even after five cycles, the substrate conversion rate of the aerogel A-CNF/PTA50% still reached 91.2% during the dynamic catalytic process. This work provides a scalable and facile way to stably deposit POM onto 3D structured materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.