Gallium‐based liquid metal alloys (LMAs) are extensively studied and used recently due to their excellent fluidity, high conductivity, and low evaporation pressure. Nonwettable and nonsticky liquid metal marbles (LMMs) are also developed to address the stickiness issue of oxidized LMAs in air. Current LMMs, however, lack acceptable controllability, shape stability, and robustness, greatly limiting their practical application. Here, a magnetically controllable liquid metal marble (MCLMM) that is noncorrosive and nonsticky, and exhibits good elasticity and mechanical robustness, is presented. The as‐obtained MCLMM consists of a soft liquid metal core coated with a mixture of ferronickel (FN) and polyethylene (PE) microparticles. This combined structure shows excellent magnetic controllability, good elasticity, and favorable mechanical robustness, as demonstrated by contact angle measurements, rolling angle measurements, corrosive testing, magnetically actuated locomotion, and impact and bounce tests. The MCLMM also possesses satisfying stability in air and stability against temperature changing. In addition, its capabilities are demonstrated as a robotic motor, controllable obstacle cleaner, and a flexible switch for circuits, which shows the potential for MCLMM applications in robotic locomotion and manipulation, electronic circuits, and beyond.
Increasing amounts of attention are being paid to the study of Soft Sensors and Soft Systems. Soft Robotic Systems require input from advances in the field of Soft Sensors. Soft sensors can help a soft robot to perceive and to act upon its immediate environment. The concept of integrating sensing capabilities into soft robotic systems is becoming increasingly important. One challenge is that most of the existing soft sensors have a requirement to be hardwired to power supplies or external data processing equipment. This requirement hinders the ability of a system designer to integrate soft sensors into soft robotic systems. In this article, we design, fabricate, and characterize a new soft sensor, which benefits from a combination of radio-frequency identification (RFID) tag design and microfluidic sensor fabrication technologies. We designed this sensor using the working principle of an RFID transporter antenna, but one whose resonant frequency changes in response to an applied strain. This new microfluidic sensor is intrinsically stretchable and can be reversibly strained. This sensor is a passive and wireless device, and as such, it does not require a power supply and is capable of transporting data without a wired connection. This strain sensor is best understood as an RFID tag antenna; it shows a resonant frequency change from approximately 860 to 800 MHz upon an applied strain change from 0% to 50%. Within the operating frequency, the sensor shows a standoff reading range of >7.5 m (at the resonant frequency). We characterize, experimentally, the electrical performance and the reliability of the fabrication process. We demonstrate a pneumatic soft robot that has four microfluidic sensors embedded in four of its legs, and we describe the implementation circuit to show that we can obtain movement information from the soft robot using our wireless soft sensors.
A novel Ag@GQD (graphene quantum dot) hybrid fabricated by a facile two-step strategy is presented: the GQDs are prepared by citrate acid and AgNO is reduced. Catalytic studies showed that the Ag@GQD hybrid exhibited excellent photothermal effect and catalytic performance for 4-nitrophenol (4-NP) reduction, suggesting that the GQDs enhanced the catalytic activity via a synergistic effect and the Ag NPs boosted the catalytic efficiency through SPR-mediated photothermal local heating.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.