In recent years, paper-based point-of-care testing (POCT) has been widely used in medical diagnostics, food safety and environmental monitoring. However, a high-cost, time-consuming and equipment-dependent sample pretreatment technique is generally required for raw sample processing, which are impractical for low-resource and disease-endemic areas. Therefore, there is an escalating demand for a cost-effective, simple and portable pretreatment technique, to be coupled with the commonly used paper-based assay (e.g. lateral flow assay) in POCT. In this review, we focus on the importance of using paper as a platform for sample pretreatment. We firstly discuss the beneficial use of paper for sample pretreatment, including sample collection and storage, separation, extraction, and concentration. We highlight the working principle and fabrication of each sample pretreatment device, the existing challenges and the future perspectives for developing paper-based sample pretreatment technique.
Paper is a widely used support for use in devices for point-of-care testing (POCT) in clinical diagnosis, food safety monitoring and environmental pollution. Paper is inexpensive, biocompatible, biodegradable and allows a sample fluid to flow by capillary force. Numerous method have been developed recently for chemical modification of papers in order to introduce different functionalities. This review (with 148 refs.) summarizes the recent progress in paper-based POCT devices. The introduction summarizes the state of the art of paper-based POCT devices and the physicochemical properties of existing unmodified materials (including cellulose, cellulose-based composites, cotton fibers, glass fibers, nitrocellulose, thread). Methods for paper modification for sample pretreatment are summarized next, with subsections on sample storage and collection, sample separation, nucleic acid extraction and sample preconcentration. Another main section covers approaches for paper modification for improving POCTs, with subsections on assays for proteins, nucleic acids, drugs, ion and organic molecules. The advantages and disadvantages of these approaches are compared. Several tables are presented that summarize the various modification techniques. A concluding section summarizes the current status, addresses challenges and gives an outlook on future perspectives of POCTs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.