In order to solve the problem that corporate financial risks seriously affect the healthy development of enterprises, credit institutions, securities investors, and even the whole of China, the K-means clustering algorithm, the risk screening process, and the Gaussian mixture clustering algorithm, the risk screening process, are proposed; experiments have shown that although the number of high-risk companies selected by the K-means algorithm is small, only 9% of the full sample, the high-risk cluster can contain nearly 30% of the new “special treatment” companies. If the time period is extended to the next 5 years, this proportion will be higher. Finally we found that if the prediction of “special handling” events is used as the criterion for evaluating high-risk clusters, then K-means clustering can effectively screen out those risky companies that need to be treated with caution by investors. The validity of the experiment is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.