The ultra-high-speed magnetic abrasive machining (UHSMAM) process is a surface improvement technique, which has been widely used to minimize the surface accuracy and change the precision morphology of difficult-to-machine materials. Surface integrity plays an important role in the machining process, because it is used to evaluate the high stress and the loaded components on the machined surface. It is important to evaluate the plastically deformed layers in ultra-precision machining surface of material. However, the usual plastic strains in the ultra-precision machining surface are significantly difficult to consider. In this paper, an ultra-high-speed magnetic abrasive machining technique is used to improve the surface accuracy and dimensional accuracy of an AISI 304 bars. Additionally, the subsequent recrystallizations technique is used for measuring the plastic strain on machined surface of AISI 304 bars. The purpose of this paper is to evaluate the effects of an UHSMAM process on the plastic strains and the strain energy of the machined surface, and to evaluate the residual strain in the plastic deformation of AISI 304 bars materials by analyzing a plastically deformed layer. The results showed that the plastic strain of the material did not change after machined by an UHSMAM process. Based on the results, an UHSMAM process could significantly improve the surface roughness, micro-diameter, and removal weight of AISI 304 bars effectively. The surface roughness Ra of AISI 304 bars was improved from 0.32 µm to 0.03 µm for 40 s of machining time at 80,000 rpm of workpiece revolution speed.
This research proposes an optimized magnetic abrasive machining process that uses an ultra-high-speed system to perform precision machining on a workpiece. The system can process several microns of material, either for machining surface roughness or for machining a workpiece for a precise micro-diameter. The stainless steel workpieces have been machined using an ultra-high-speed magnetic abrasive machining (UHSMAM) process. The experiments were performed analyzing the accuracy of the machined workpiece diameter, using response surface methodology. The results obtained after machining have been analyzed to determine the effect of different process parameters such as machining speed, machining time, machining frequencies, inert gas in/out, magnetic pole types, and magnetic abrasive mesh size for the individual workpiece, as well as to study various interaction effects that may significantly affect the machining performance of the process. The obtained outcomes of the analysis for different workpieces have been critically compared to understand the effect of the considered process parameters based on the resulting mechanical properties. Regression analysis was used to confirm the stability of the micro-diameter and the processing efficiency. Atomic force microscope (AFM) micrographs were also obtained to study the surface morphology of the precision-machined workpiece.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.