In this paper, a novel formation control scheme is presented by integrating the dynamic surface control for multi-quadrotor subject with model uncertainties and external disturbances. First, according to requirements of formation control, the target trajectories of followers are obtained by the designed virtual quadrotors. Then, the formation control problem is transformed into the trajectory tracking control problem. Second, the saturation function and the auxiliary system are developed to make up for nonlinear terms arising from input saturation. A nonlinear extended state observer (ESO) is proposed to estimate and compensate for model uncertainties and external disturbances, and a dynamic surface controller based on the nonlinear ESO is constructed for the desired formation performance. In addition, the amount of communications between the quadrotors is decreased by the constructed distributed speed estimator. And the uniformly ultimately bounded is proved by using the Lyapunov method. Finally, the numerical example is used to demonstrate that the designed controller is effective.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.