Unimodular gravity is a modified theory with respect to general relativity by an extra condition that the determinant of the metric is fixed. Especially, if the energy-momentum tensor is not imposed to be conserved separately, a new geometric structure will appear with potential observational signatures. In this paper, we study the tidal deformability of a compact star in unimodular gravity under the assumption of a non-conserved energy-momentum tensor. Both the electric-type and magnetic-type quadrupole tidal Love numbers are calculated for neutron stars using the polytrope model. It is found that the electric-type tidal Love numbers are monotonically increasing, but the magnetic-type ones are decreasing, with the increase in the non-conservation parameter. Compared with the observational data from the detected gravitational-wave events, a small negative non-conservation parameter is favored.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.