The accelerated thermo-oxidative aging of acrylonitrile–butadiene rubber (NBR) was studied at elevated temperatures. The chemical structure characterized by attenuated total reflectance–Fourier transform infrared spectroscopy (ATR-FTIR) and pyrolysis gas chromatography–mass spectroscopy (PGC-MS) showed the loss of low-molecular-weight additives, such as antioxidants and paraffin, and the formation of carbonyl groups and unsaturated double bonds. The cross-linking degree characterized by NMR and a swelling test showed that aging is a competitive process of cross-linking and chain scission. Cross-linking dominated the thermal aging of NBR most of the time, whereas chain scission began to increase after a long time at high temperatures. The changes of mechanical property magnitudes during thermal aging of NBR were studied by using the recovery from bending test (RFB) and tensile test. By comparing the physical property results and the structural changes, their relationship is discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.