Background Nanoplastics have been recently found widely distributed in our natural environment where ubiquitously bacteria are major participants in various material cycles. Understanding how nanoplastics interact with bacterial cell membrane is critical to grasp their uptake processes as well as to analyze their associated risks in ecosystems and human microflora. However, little is known about the detailed interaction of differentially charged nanoplastics with bacteria. The present work experimentally and theoretically demonstrated that nanoplastics enter into bacteria depending on the surface charges and cell envelope structural features, and proved the shielding role of membrane lipids against nanoplastics. Results Positively charged polystyrene nanoplastics (PS-NH2, 80 nm) can efficiently translocate across cell membranes, while negatively charged PS (PS-COOH) and neutral PS show almost no or much less efficacy in translocation. Molecular dynamics simulations revealed that the PS-NH2 displayed more favourable electrostatic interactions with bacterial membranes and was subjected to internalisation through membrane penetration. The positively charged nanoplastics destroy cell envelope of Gram-positive B. subtilis by forming membrane pore, while enter into the Gram-negative E. coli with a relatively intact envelope. The accumulated positively charged nanoplastics conveyed more cell stress by inducing a higher level of reactive oxygen species (ROS). However, the subsequently released membrane lipid-coated nanoplastics were nearly nontoxic to cells, and like wise, stealthy bacteria wrapped up with artifical lipid layers became less sensitive to the positively charged nanoplastics, thereby illustrating that the membrane lipid can shield the strong interaction between the positively charged nanoplastics and cells. Conclusions Our findings elucidated the molecular mechanism of nanoplastics’ interaction and accumulation within bacteria, and implied the shielding and internalization effect of membrane lipid on toxic nanoplastics could promote bacteria for potential plastic bioremediation. Graphical Abstract
Nanoplastics are emerging pollutants of global concern. Agricultural soil is becoming a primary sink for nanoplastics generated from plastic debris. The uptake and accumulation of nanoplastics by crops contaminate the food chain and pose unexpected risks to human health. However, whether nanoplastics can enter grains and their impact on the grains of crop grown in contaminated soil is still unknown. Here, the translocation of polystyrene nanoplastics (PS-NPs) in crops, including peanut (Arachis hypogaea L.) and rice (Oryza sativa L.) is investigated. It is demonstrated PS-NPs translocation from the root and accumulation in the grains at the maturation stage. The treatment with PS-NPs (250 mg kg −1 ) increases the empty-shell numbers of rice grain by 35.45%, thereby decreasing the seed-setting rate of rice by 3.02%, and also decreases the average seed weight of peanuts by 3.45%. Moreover, PS-NPs exerted adverse effects on nutritional quality, such as decreasing the content of mineral elements, amino acids, and unsaturated fatty acids. To the knowledge, this is the first report of the presence of nanoplastics in the grains of crop plants grown in soil containing nanoplastics, and the results highlight the impact of nanoplastics on the yield and nutritional quality of crop grains.
Graphene and its derivatives have emerged as a promising nanomaterial in biomedical applications. However, their impact on biosafety continues to be a concern in the field, particularly, their potential cytotoxicity...
Fresh two-dimensional molybdenum disulfide (MoS2) absorbs the hydrocarbon contaminations in the ambient air and makes surface aging. To understand how the surface aging influences the interactions between MoS2 and biomolecules is important in the biomedical applications. Here, employing all-atom molecular dynamics simulations, we investigated the interactions of the fresh and aged MoS2 nanosheets with the lipid membranes of different components. Our results demonstrate that both the fresh and aged MoS2 nanosheets can spontaneously insert into the bilayer membranes. However, the fresh MoS2 nanosheet displays significantly stronger interaction and then has a larger penetration depth than the aged counterpart, regardless of the lipid components. The calculations of potential mean forces through the umbrella sampling further confirm that the insertion of fresh MoS2 into the lipid membranes is more energetically favorable. Moreover, we found that the fresh MoS2 nanosheet can cause a larger damage to the integrity of lipid membranes than the aged one. This work provides insightful understandings of the surface-aging-dependent interactions of the MoS2 nanosheets with biomembranes, which could facilitate the design of novel MoS2-based nanodevices with advanced surface properties.
Background. The efficacy and safety of cisapride in functional constipation (FC) remain unclear. This meta-analysis aimed at investigating the efficacy and safety of cisapride and Maren pill in the treatment of FC. Material and Methods. PubMed, Web of Science, Embase, Cochrane Library, WANFANG DATA, VIP, and CNKI databases were searched from inception to December 2021 for eligible comparative studies investigating the effects and safety of cisapride and Maren pill for FC. The primary outcome was the therapeutic effectiveness rate. The secondary outcomes were recurrence rate and incidence of adverse events. Results. A total of 526 studies were screened out by searching the electronic databases and by manually searching the relevant reference lists. According to the four-step process (identification, screening, eligibility, and inclusion) to select studies for meta-analysis, 521 articles were excluded. Finally, 5 studies with a total of 414 patients with FC were included in the quantitative analysis after sequential exclusion. The cisapride group had a significantly higher effectiveness rate than the control one (90.78% vs 64.97%, P < 0.05 ). The incidence of adverse events in the cisapride group was lower than that in the Maren pill group (10.08% vs 13.95%, P < 0.05 ). Similarly, the recurrence rate of the cisapride group was lower than that of the Maren pill group (32.31% vs 53.16%, P < 0.05 ). Conclusion. For FC patients, cisapride is more effective than Maren pill; the recurrence rate and adverse event rate are lower than the latter, which makes it a better choice. The combination of cisapride and Maren pill is a direction of future research studies, which may increase the efficiency and reduce the dosage of cisapride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.