The main purpose of the study is to find the code with similar possibilities to effectively avoid the adverse effects of code duplication. Through the clustering pretreatment of document feature information, to extract the relevant features of the document. Then the basic characteristics are used to cluster the document, to find out the best number of clusters. According to the reasonable number of clusters that have been found, using the vectors that generated through TF-IDF method, combined the K-means clustering algorithm to distinguish the contents of the files, as well as the introduction of cosine similarity, to determine the similarity of two texts and classify the parallel documents. From the test data set, the method can accurately find the code with the possibility of duplication and works quiet well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.