Triclosan (TCS), a high-production-volume chemical used as a bactericide in personal care products, is a priority pollutant of growing concern to human and environmental health. TCS is capable of altering the activity of type 1 ryanodine receptor (RyR1), but its potential to influence physiological excitation–contraction coupling (ECC) and muscle function has not been investigated. Here, we report that TCS impairs ECC of both cardiac and skeletal muscle in vitro and in vivo. TCS acutely depresses hemodynamics and grip strength in mice at doses ≥12.5 mg/kg i.p., and a concentration ≥0.52 μM in water compromises swimming performance in larval fathead minnow. In isolated ventricular cardiomyocytes, skeletal myotubes, and adult flexor digitorum brevis fibers TCS depresses electrically evoked ECC within ∼10–20 min. In myotubes, nanomolar to low micromolar TCS initially potentiates electrically evoked Ca 2+ transients followed by complete failure of ECC, independent of Ca 2+ store depletion or block of RyR1 channels. TCS also completely blocks excitation-coupled Ca 2+ entry. Voltage clamp experiments showed that TCS partially inhibits L-type Ca 2+ currents of cardiac and skeletal muscle, and [ 3 H]PN200 binding to skeletal membranes is noncompetitively inhibited by TCS in the same concentration range that enhances [ 3 H]ryanodine binding. TCS potently impairs orthograde and retrograde signaling between L-type Ca 2+ and RyR channels in skeletal muscle, and L-type Ca 2+ entry in cardiac muscle, revealing a mechanism by which TCS weakens cardiac and skeletal muscle contractility in a manner that may negatively impact muscle health, especially in susceptible populations.
BackgroundPolybrominated diphenyl ethers (PBDEs) are widely used flame retardants that bioaccumulate in human tissues. Their neurotoxicity involves dysregulation of calcium ion (Ca2+) signaling; however, specific mechanisms have yet to be defined.ObjectiveWe aimed to define the structure–activity relationship (SAR) for PBDEs and their metabolites toward ryanodine receptors type 1 (RyR1) and type 2 (RyR2) and to determine whether it predicts neurotoxicity.MethodsWe analyzed [3H]ryanodine binding, microsomal Ca2+ fluxes, cellular measurements of Ca2+ homeostasis, and neurotoxicity to define mechanisms and specificity of PBDE-mediated Ca2+ dysregulation.ResultsPBDEs possessing two ortho-bromine substituents and lacking at least one para-bromine substituent (e.g., BDE-49) activate RyR1 and RyR2 with greater efficacy than corresponding congeners with two para-bromine substitutions (e.g., BDE-47). Addition of a methoxy group in the free para position reduces the activity of parent PBDEs. The hydroxylated BDEs 6-OH-BDE-47 and 4′-OH-BDE-49 are biphasic RyR modulators. Pretreatment of HEK293 cells (derived from human embryonic kidney cells) expressing either RyR1 or RyR2 with BDE-49 (250 nM) sensitized Ca2+ flux triggered by RyR agonists, whereas BDE-47 (250 nM) had negligible activity. The divergent activity of BDE-49, BDE-47, and 6-OH-BDE-47 toward RyRs predicted neurotoxicity in cultures of cortical neurons.ConclusionsWe found that PBDEs are potent modulators of RyR1 and RyR2. A stringent SAR at the ortho and para position determined whether a congener enhanced, inhibited, or exerted nonmonotonic actions toward RyRs. These results identify a convergent molecular target of PBDEs previously identified for noncoplanar polychlorinated biphenyls (PCBs) that predicts their cellular neurotoxicity and therefore could be a useful tool in risk assessment of PBDEs and related compounds.
Metal ions are essential for the folding of RNA into stable tertiary structures and for the catalytic activity of some RNA enzymes. To aid in the study of the roles of metal ions in RNA structural biology, we have created MeRNA (Metals in RNA), a comprehensive compilation of all metal binding sites identified in RNA 3D structures available from the PDB and Nucleic Acid Database. Currently, our database contains information relating to binding of 9764 metal ions corresponding to 23 distinct elements, in 256 RNA structures. The metal ion locations were confirmed and ligands characterized using original literature references. MeRNA includes eight manually identified metal-ion binding motifs, which are described in the literature. MeRNA is searchable by PDB identifier, metal ion, method of structure determination, resolution and R-values for X-ray structure and distance from metal to any RNA atom or to water. New structures with their respective binding motifs will be added to the database as they become available. The MeRNA database will further our understanding of the roles of metal ions in RNA folding and catalysis and have applications in structural and functional analysis, RNA design and engineering. The MeRNA database is accessible at .
Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.