Epilepsy is one of the most common chronic neurological diseases. High-frequency oscillations (HFOs) have emerged as promising biomarkers for the epileptogenic zone. However, visual marking of HFOs is a time-consuming and laborious process. Several automated techniques have been proposed to detect HFOs, yet these are still far from being suitable for application in a clinical setting. Here, ripples and fast ripples from intracranial electroencephalograms were detected in six patients with intractable epilepsy using a convolutional neural network (CNN) method. This approach proved more accurate than using four other HFO detectors integrated in RIPPLELAB, providing a higher sensitivity (77.04% for ripples and 83.23% for fast ripples) and specificity (72.27% for ripples and 79.36% for fast ripples) for HFO detection. Furthermore, for one patient, the Cohen's kappa coefficients comparing automated detection and visual analysis results were 0.541 for ripples and 0.777 for fast ripples. Hence, our automated detector was capable of reliable estimates of ripples and fast ripples with higher sensitivity and specificity than four other HFO detectors. Our detector may be used to assist clinicians in locating epileptogenic zone in the future.
This study discusses experimental methods and results on passive bistatic synthetic aperture radar using navigation satellites as transmitters of opportunity and a moving receiver. The article highlights practical issues in imaging. Experimental imagery obtained using Galileo satellite emissions and a receiver onboard a ground moving vehicle confirm the system technical feasibility as well as some of its major theoretically predicted parameters.
Objective
Epilepsy is a chronic brain disease, which is prone to relapse and affects individuals of all ages worldwide, particularly the very young and elderly. Up to one-third of these patients are medically intractable and require resection surgery. However, the outcomes of epilepsy surgery rely upon the clear identification of epileptogenic zone (EZ). The combination of cortico-cortical evoked potential (CCEP) and electrocorticography (ECoG) provides an opportunity to observe the connectivity of human brain network and more comprehensive information that may help the clinicians localize the epileptogenic focus more precisely. However, there is no standard analysis method in the clinical application of CCEPs, especially for the quantitative analysis of abnormal connectivity of epileptic networks. The aim of this paper was to present an approach on the batch processing of CCEPs and provide information relating to the localization of EZ for clinical study.
Methods
Eight medically intractable epilepsy patients were included in this study. Each patient was implanted with subdural grid electrodes and electrical stimulations were applied directly to their cortex to induce CCEPs. After signal preprocessing, we constructed three effective brain networks at different spatial scales for each patient, regarding the amplitudes of CCEPs as the connection weights. Graph theory was then applied to analyze the brain network topology of epileptic patients, and the topological metrics of EZ and non-EZ (NEZ) were compared.
Results
The effective connectivity network reconstructed from CCEPs was asymmetric, both the number and the amplitudes of effective CCEPs decreased with increasing distance between stimulating and recording sites. Besides, the distribution of CCEP responses was associated with the locations of EZ which tended to have higher degree centrality (DC) and nodal shortest path length (NLP) than NEZ.
Conclusion
Our results indicated that the brain networks of epileptics were asymmetric and mainly composed of short-distance connections. The DC and NLP were highly consistent to the distribution of the EZ, and these topological parameters have great potential to be readily applied to the clinical localization of the EZ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.