Manganese oxides and iron-manganese oxides supported on TiO2 were prepared by the sol-gel method and used for low-temperature selective catalytic reduction (SCR) of NO with NH3. Base on the previous study, Mn(0.4)/ TiO2 and Fe(0.1)-Mn(0.4)/TiO2 were then selected to carry out the in situ diffuse reflectance infrared transform spectroscopy (DRIFT) investigation for revealing the reaction mechanism. The DRIFT spectroscopy for the adsorption of NH3 indicated the presence of coordinated NH3 and NH4+ on both of the two catalysts. When NO was introduced, the coordinated NH3 on the catalyst surface was consumed rapidly, indicating these species could react with NO effectively. When NH3 was introduced into the sample preadsorbed with NO + O2, SCR reaction would not proceed on Mn(0.4)/TiO2. However, for Fe(0.1)-Mn(0.4)/ TiO2 the bands due to coordinated NH3 on Fe2O3 were formed. Simultaneously, the bidentate nitrates were transformed to monodentate nitrates and NH4+ was detected. And NO2 from the oxidation of NO on catalyst could react with NH4+ leading to the reduction of NO. Therefore, it was suggested that the SCR reaction on Fe(0.1)-Mn(0.4)/TiO2 could also take place in a different way from the reactions on Mn(0.4)/TiO2 proposed by other researchers. Furthermore, the SCR reaction steps for these two kinds of catalysts were proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.