The unique porous metal-organic framework {KCo3(C6H4O7)(C6H5O7)(H2O)2.8H2O}8 (1), which exhibits an unprecedented infinite 3D (3,6)-connected decorated anatase net, has been obtained by hydrothermal reaction. Upon dehydration, the compound retains crystallinity and exhibits a type I N2 sorption isotherm, characteristic of a microporous solid with apparent Langmuir surface area 939 m2/g and pore volume 0.31 cm3/g. Magnetic measurements for both 1 and dehydrated 1 show the spin-canted antiferromagnetic state below 5 K and a magnetic hysteresis loop at 2 K. Thus, dehydrated 1 represents the first metal-organic framework for which microporosity and a spin-canted antiferromagnetic state coexist, which demonstrates that the self-assembly of organo-polymetal clusters and metal ions can provide a potential route to magnetic porous metal-organic frameworks.
A novel niobium oxyiodate sulfate, Nb2O3(IO3)2 (SO4), was fabricated by a rational multi‐component design under moderate hydrothermal conditions. This multi‐component design is inspired by an interesting niobium oxysulfate reaction, which opens a new door for synthetic method to effectively introduce refractory metals such as Nb into crystal structures by hydrothermal synthesis. Nb2O3(IO3)2(SO4) features a cube‐like topological structure with a large phase‐matching second harmonic generation (SHG) response (6×KDP), a wide transparency window (0.38–8 μm), and a high laser damage threshold (LDT) (20×AgGaS2). It has the highest thermostability (stable up to 580 °C under air) among reported non‐centrosymmetric (NCS) iodates and sulfates and is stable in water and even concentrated H2SO4. Furthermore, Nb2O3(IO3)2(SO4) is a unique nonlinear optical (NLO) material among iodates and sulfates, because its SHG effect is mainly caused by the MO6 units rather than the IO3 or SO4 units, which is demonstrated by density functional theory (DFT) calculations.
Compact tension tests and indentation‐fracture tests have been conducted to study the effects of an applied electric field on the fracture toughness (KIC) of poled commercial lead zirconate titanate (PZT) ceramics. The experimental results show that an applied electric field, either parallel or antiparallel to the poling direction, considerably reduces the KIC value of the PZT ceramics. The reduction in KIC for a negative field is larger than that for a positive field of the same strength. The failure mode in the PZT ceramics is basically transgranular, insensitive to the applied electric field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.