The Education Partnership Assistance (EPA) is an institutional arrangement that has played an important role in the balanced and sustainable development of higher education in China, in which universities of East China provide the paired universities in West China with various assistance. EPA is part of the political commitment made by the Chinese government to fulfil sustainable and balanced development. By applying a policy process framework and qualitative text analysis to the government and universities’ official documents, we find EPA is primarily based on the Communist Party of China (CPC)’s ideological cornerstones of “common prosperity”. Over the past two decades, by conducting leadership secondment, faculty and student training, and ICT and library development, EPA has improved the development of universities in West China, and the central government’s current emphasis remains on the continuation of EPA. However, this paper argues that EPA cannot be going on indefinitely and that true sustainability is contingent on the capacity building of the recipient universities, rather than on the endless assistance from supporting universities. EPA is a localized action to achieve the Sustainable Development Goals (SDGs) in China. It sheds light on the connections between domestic aid and the SDGs from a supplementary perspective.
This work examines precursory atmospheric circulations with various wave trains contributing to extreme cold weather over central Eurasia in boreal winter from 1979 to 2019. By conducting extended empirical orthogonal function (EEOF) on the preceding propagation circulation fields 2 weeks before the onset of extreme cold event (ECE) cases, three types of ECEs with different disturbance origins are classified and analysed. Type 1 denotes the positive phase of EEOF mode 1, shows as negative phase of Arctic Oscillation-like pattern.The outbreak of this type of ECE is affected by a wave train originating from Baffin Bay, where an anomalous anticylonic system persisted under a background of weakened westerlies over middle-high latitudes. Type 2 is picked from positive phase of EEOF mode 2, manifests as a developing blocking system that forms over Scandinavia and shifts to the Barents area. It is found that the blocking system is mainly strengthened by the downstream dispersion process of wave packets that are generated at the northern exit area of the North Pacific westerly jet, where exist anomalous cyclonic zonal wind shear and precipitation. Type 3 is selected from the negative phase of EEOF mode 2, which has a similar origin to type 2 but with the North Pacific jet exit more southward. Then, the generated wave packets propagate to Europe along the northerly jet stream over the North Atlantic, which acts as a waveguide and extends the wave train to downstream. In a word, these three types of precursory atmospheric wave train patterns that bring extreme cold anomalies to Eurasia possess diverse disturbing sources and downstream development mechanisms, and the essential role of the westerly jet is further highlighted. The results, which are investigated based on a quasi-biweekly time scale, may deepen our understanding of the atmospheric genesis of extreme weather and improve extended-range weather forecast.
This work examines precursory atmospheric circulations with various wave trains contributing to extreme cooling over central Eurasia in boreal winter from 1979-2016 based on the ERA-Interim dataset. The empirical orthogonal function (EOF) method is used to classify the anomalous sea level pressure field averaged in two weeks prior to extreme cooling. Based on the classification, three types of precursory atmospheric circulation patterns are named according to the origins of wave trains, and their formation mechanisms are revealed as well . Type1: Baffin Bay-origin pattern, which forms in the downstream development of Rossby wave packets generated from the downward stratospheric energy transmission over the Baffin Bay. Type2: Pacific-origin pattern, similar to a Eurasian (EU) teleconnection pattern, arises at the exit area of the westerly jet in the central North Pacific where cyclonic shear exists; then it develops along the northerly westerly jet over the North Atlantic, which may act as a waveguide to the Eurasian continent. Type 3: Atlantic-origin, manifests as the negative phase of type 2, consistent with the Scandinavian (SCAND) pattern, which may results from the air-sea interaction induced by the warm anomaly of sea surface temperature in the middle of North Atlantic. In conclusion, the three types of precursory atmospheric wave train patterns that bring extreme cooling to Eurasia possess diverse disturbing sources and development mechanisms. The results, which are investigated based on a quasi-biweekly time scale , deepen our understanding of the atmospheric genesis of extreme weather and have specific indicative significance to improve the technique of extended forecast.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.