This paper presents the design and implementation of signaling splitting scheme in hyper-cellular network on a software defined radio platform. Hyper-cellular network is a novel architecture of future mobile communication systems in which signaling and data are decoupled at the air interface to mitigate the signaling overhead and allow energy efficient operation of base stations. On an open source software defined radio platform, OpenBTS, we investigate the feasibility of signaling splitting for GSM protocol and implement a novel system which can prove the proposed concept. Standard GSM handsets can camp on the network with the help of signaling base station, and data base station will be appointed to handle phone calls on demand. Our work initiates the systematic approach to study hyper-cellular concept in real wireless environment with both software and hardware implementations.
Beamforming structures with fixed beam codebooks provide economical solutions for millimeter wave (mmWave) communications due to the low hardware cost. However, the training overhead to search for the optimal beamforming configuration is proportional to the codebook size. To improve the efficiency of beam tracking, we propose a beam tracking scheme based on the channel fingerprint database, which comprises mappings between statistical beamforming gains and user locations. The scheme tracks user movement by utilizing the trained beam configurations and estimating the gains of beam configurations that are not trained. Simulations show that the proposed scheme achieves significant beamforming performance gains over existing beam tracking schemes.
Timely and accurate knowledge of channel state information (CSI) is necessary to support scheduling operations at both physical and network layers. In order to support pilotfree channel estimation in cell sleeping scenarios, we propose to adopt a channel database that stores the CSI as a function of geographic locations. Such a channel database is generated from historical user records, which usually can not cover all the locations in the cell. Therefore, we develop a two-step interpolation method to infer the channels at the uncovered locations. The method firstly applies the K-nearest-neighbor method to form a coarse database and then refines it with a deep convolutional neural network. When applied to the channel data generated by ray tracing software, our method shows a great advantage in performance over the conventional interpolation methods.
Wireless communication networks rely heavily on channel state information (CSI) to make informed decision for signal processing and network operations. However, the traditional CSI acquisition methods is facing many difficulties: pilot-aided channel training consumes a great deal of channel resources and reduces the opportunities for energy saving, while location-aided channel estimation suffers from inaccurate and insufficient location information. In this paper, we propose a novel channel learning framework, which can tackle these difficulties by inferring unobservable CSI from the observable one. We formulate this framework theoretically and illustrate a special case in which the learnability of the unobservable CSI can be guaranteed. Possible applications of channel learning are then described, including cell selection in multi-tier networks, device discovery for device-to-device (D2D) communications, as well as end-to-end user association for load balancing. We also propose a neuron-network-based algorithm for the cell selection problem in multi-tier networks. The performance of this algorithm is evaluated using geometry-based stochastic channel model (GSCM). In settings with 5 small cells, the average cell-selection accuracy is 73% -only a 3.9% loss compared with a location-aided algorithm which requires genuine location information.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.